## Supporting Information

Enhanced photocatalytic  $H_2$  evolution: Optimized atomic hydrogen desorption via free-electron transfer in sulfur-rich  $MoWS_{2+x}$  on vacancy-engineered CdS crystals

Ruiding Fei<sup>a,1</sup>, Jianfeng Zhao<sup>b,1</sup>, Huinan Wang<sup>a</sup>, Huijuan Lin<sup>a</sup>, Kui Xu<sup>a</sup>, Guang Zeng<sup>b</sup>, Wenchao Wang<sup>c,d</sup>, Zhiping Yan<sup>a,\*</sup>

<sup>a</sup> School of Flexible Electronic (Future Technologies), Key Laboratory of Flexible Electronics (KLOFE), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P.R. China

<sup>b</sup> State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P.R. China

<sup>c</sup> School of New Energy, Nanjing University of Science & Technology, Jiangyin 214443, P.R. China

<sup>d</sup> Department of Chemistry, The University of Hong Kong, Pokfulam Road. Hong Kong SAR, P.R. China

\* Corresponding author' email address: iamzpyan@njtech.edu.cn (Z. Yan).

<sup>1</sup> Those authors contribute equally to this work.

## **Table of Contents**

| Figure S1. (a) UV-visible absorption spectrum of $MoS_4^{2-}$ , $W^{5+}$ and $W(MoS_4)_x$       |
|-------------------------------------------------------------------------------------------------|
| solutions. (b) the corresponding photographs for the color change of $CdS_v$ , $W^{5+}/CdS_v$ , |
| $W(MoS_4)_x/CdS_v$ , and $MoWS_{2+x}/CdS_v$ suspensions4                                        |
| Figure S2. SEM image of (a) $CdS_v$ and (b) $MoS_{2+x}/CdS_v$                                   |
| Figure S3. SEM image of (a) CdS, (b) MoS <sub>2+x</sub> /CdS and (c) MoWS <sub>2+x</sub> /CdS5  |
| Figure S4. EPR spectra of CdS <sub>v</sub> and MWC-3                                            |
| Figure S5. (a) XPS survey spectra of Cd 3d, S 2p, Mo 3d, W 4f and S 2s. (b) A                   |
| magnified view of W 4f in the XPS survey spectrum7                                              |
| Figure S6. Fourier transform infrared spectroscopy of MWC-3 and MWC-4                           |
| Figure S7. Hydrogen evolution rates of CdS, MoS <sub>2+x</sub> /CdS and MWC-x' samples 9        |
| Figure S8. SEM images of MWC-3 (a) after 2 h irradiation ( $\lambda \ge 420$ nm). (b) XRD       |
| patterns of MWC-3 before and after 2 h irradiation10                                            |
| Figure S9. The raw data from absorption test of the NIR filter 11                               |
| Figure S10. Photocurrent curves of CdS, MoS <sub>2+x</sub> /CdS and MWC-3' 12                   |
| Figure S11. Mott-Schottky plots of (a) $CdS_v$ and (b) $MoS_{2+x}/CdS_v$ in 0.5 M $Na_2SO_4$    |
| tested at 1000 Hz, 2000 Hz and 3000 Hz, respectively                                            |
| Figure S12. Fs-TA measurements after 500 nm excitation with fluence of 2.2 uJ/pulse             |
| at visible region                                                                               |
| Figure S13. Density of states (DOS) diagram for (a) $MoS_{2+x}$ and (b) $MoWS_{2+x}$            |
| (Illustrations for the respective computational models) 15                                      |
| <b>Table S1.</b> Calculated quantum yields at different wavelengths. 16                         |
| Table S2. Composition (wt %) of the various samples based on the ICP-AES results.16             |
| Table S3. Comparison of H <sub>2</sub> evolution activity between molybdenum disulfide          |
| co-catalysts and cadmium sulfide based composite photocatalysts17                               |
| Table S4. The calculated carrier density of $CdS_v$ , $MoS_{2+x}/CdS_v$ , MWC-3 at 1000 Hz,     |
| 2000 Hz and 3000 Hz, respectively                                                               |

| nm excitation                                                        | 10 10 10 10       |
|----------------------------------------------------------------------|-------------------|
| <b>Table S6</b> Kinetic fitting parameters for MWC-3 at 1273 nm wave | lengths after 500 |
| nm excitation                                                        |                   |
| References                                                           |                   |



Figure S1. (a) UV-visible absorption spectrum of  $MoS_4^{2-}$ ,  $W^{5+}$  and  $W(MoS_4)_x$  solutions. (b) the corresponding photographs for the color change of  $CdS_v$ ,  $W^{5+}/CdS_v$ ,  $W(MoS_4)_x/CdS_v$ , and  $MoWS_{2+x}/CdS_v$  suspensions.

(a)



Figure S2. SEM image of (a)  $CdS_v$  and (b)  $MoS_{2+x}/CdS_v$ .



Figure S3. SEM image of (a) CdS, (b) MoS<sub>2+x</sub>/CdS and (c) MoWS<sub>2+x</sub>/CdS.



Figure S4. EPR spectra of  $CdS_v$  and MWC-3.



**Figure S5.** (a) XPS survey spectra of Cd 3d, S 2p, Mo 3d, W 4f and S 2s. (b) A magnified view of W 4f in the XPS survey spectrum.



Figure S6. Fourier transform infrared spectroscopy of MWC-3 and MWC-4.



**Figure S7.** Hydrogen evolution rates of CdS, MoS<sub>2+x</sub>/CdS and MWC-x' samples.



**Figure S8.** SEM images of MWC-3 (a) after 2 h irradiation ( $\lambda \ge 420$  nm). (b) XRD patterns of MWC-3 before and after 2 h irradiation.



Figure S9. The raw data from absorption test of the NIR filter.



Figure S10. Photocurrent curves of CdS,  $MoS_{2+x}/CdS$  and MWC-3'.



**Figure S11.** Mott-Schottky plots of (a)  $CdS_v$  and (b)  $MoS_{2+x}/CdS_v$  in 0.5 M  $Na_2SO_4$  tested at 1000 Hz, 2000 Hz and 3000 Hz, respectively.



**Fig. S12.** Fs-TA measurements after 500 nm excitation with fluence of 2.2  $\mu$ J/pulse at visible region: (a, b) The contour maps of samples upon 500 nm excitation, (c, d) the kinetic fitting at 530 nm for corresponding samples.



**Figure S13.** Density of states (DOS) diagram for (a)  $MoS_{2+x}$  and (b)  $MoWS_{2+x}$  (Illustrations for the respective computational models).

| λ (nm)  | A (cm <sup>2</sup> ) | $E(mW \cdot cm^{-2})$ | Chromatographic indication | $R_{H_2}(\mu mol \cdot h^{-1})$ | QE     |
|---------|----------------------|-----------------------|----------------------------|---------------------------------|--------|
| 390-400 | 2                    | 12.5                  | 1.6043                     | 19.637                          | 19.13% |
| 420-430 | 2                    | 19.8                  | 2.0608                     | 25.2238                         | 14.40% |
| 440-450 | 2                    | 27.3                  | 2.9018                     | 35.5184                         | 14.04% |
| 480-485 | 2                    | 16.2                  | 1.8426                     | 22.553                          | 13.77% |
| 500-510 | 2                    | 13.2                  | 1.1017                     | 13.4848                         | 9.70%  |

Table S1. Calculated quantum yields at different wavelengths.

Table S2. Composition (wt %) of the various samples based on the ICP-AES results.

| Samples            | S (at.%) | Mo (at.%) | W (at.%) | S/(Mo+W) |
|--------------------|----------|-----------|----------|----------|
| $MoWS_{2+x}/TiO_2$ | 8.64     | 0.019     | 0.039    | > 2      |

**Table S3.** Comparison of H2 evolution activity between molybdenum disulfidecocatalysts and cadmium sulfide based composite photocatalysts.

| Photocatalysts                          | Light source   | Incident light | Photocatalytic performance                                              | AQY                | Ref.         |
|-----------------------------------------|----------------|----------------|-------------------------------------------------------------------------|--------------------|--------------|
| CdS/Mo-VC                               | 300 W Xe light | λ≥420 nm       | H <sub>2</sub> rate: 2267 $\mu$ mol·g <sup>-1</sup> ·h <sup>-1</sup>    | 4.3%<br>(420 nm)   | [1]          |
| MoWS <sub>2+x</sub> /TiO <sub>2</sub>   | 4 LED light    | λ≥365 nm       | H <sub>2</sub> rate: 4620.8 $\mu$ mol·g <sup>-1</sup> ·h <sup>-1</sup>  | 22.2%<br>(365 nm)  | [2]          |
| TiO <sub>2</sub> /Au@MoS <sub>2+x</sub> | 4 LED light    | λ≥365 nm       | H <sub>2</sub> rate: 7858.1 $\mu$ mol·g <sup>-1</sup> ·h <sup>-1</sup>  | 38.1%<br>(365 nm)  | [3]          |
| NiCd/CdS                                | 300 W Xe light | λ>410 nm       | $H_2$ rate: 11570 $\mu$ mol·g <sup>-1</sup> ·h <sup>-1</sup>            | /                  | [4]          |
| RuMoS <sub>2+x</sub> /TiO <sub>2</sub>  | 4 LED light    | λ≥365 nm       | H <sub>2</sub> rate: 2649.3 $\mu$ mol·g <sup>-1</sup> ·h <sup>-1</sup>  | 10.73%<br>(365 nm) | [5]          |
| ZnO/CdS/MoS <sub>2</sub>                | 300 W Xe light | λ≥420 nm       | H <sub>2</sub> rate: 10247.4 $\mu$ mol·g <sup>-1</sup> ·h <sup>-1</sup> | /                  | [6]          |
| CdS-MoS <sub>2</sub> -CoO <sub>x</sub>  | 300 W Xe light | λ≥420 nm       | H <sub>2</sub> rate: 7400 $\mu$ mol·g <sup>-1</sup> ·h <sup>-1</sup>    | 7.6%<br>(420nm)    | [7]          |
| MoSe <sub>2</sub> /CdS                  | 300 W Xe light | λ≥420 nm       | $H_2$ rate: 4700 µmol·g <sup>-1</sup> ·h <sup>-1</sup>                  | 15.6%<br>(450 nm)  | [8]          |
| CdS/MoC                                 | 300 W Xe light | λ≥420 nm       | H <sub>2</sub> rate: 224.5 $\mu$ mol·g <sup>-1</sup> ·h <sup>-1</sup>   | 7.6%<br>(420 nm)   | [9]          |
| $MoWS_{2+x}/CdS_{v}$                    | 300 W Xe light | λ≥420 nm       | H <sub>2</sub> rate: 9166.13 $\mu$ mol·g <sup>-1</sup> ·h <sup>-1</sup> | 19.13%<br>(390 nm) | This<br>work |

|           | С                     | arrier Density (cm <sup>-3</sup>     | )                     |
|-----------|-----------------------|--------------------------------------|-----------------------|
| Frequency | CdS <sub>v</sub>      | MoS <sub>2+x</sub> /CdS <sub>v</sub> | MWC-3                 |
| 1000Hz    | 5.73×10 <sup>21</sup> | 7.63×10 <sup>21</sup>                | 9.11×10 <sup>21</sup> |
| 2000Hz    | 4.28×10 <sup>21</sup> | 4.66×10 <sup>21</sup>                | 6.73×10 <sup>21</sup> |
| 3000Hz    | 3.85×10 <sup>21</sup> | 4.13×10 <sup>21</sup>                | 5.12×10 <sup>21</sup> |

**Table S4.** The calculated carrier density of  $CdS_v$ ,  $MoS_{2+x}/CdS_v$ , MWC-3 at 1000 Hz, 2000 Hz and 3000 Hz, respectively.

**Table S5.** Kinetic fitting parameters for MWC-3 and  $CdS_v$  at 1273 nm upon 410 nm excitation.

| Sample | λ (nm) | $\tau_1/ps$ | A1 (%) | $\tau_2/ps$ | $A_{2}(\%)$ | $	au_{aver}/ps$ |
|--------|--------|-------------|--------|-------------|-------------|-----------------|
| MWC-3  | 1273   | 12.1        | 86.2   | 77.6        | 13.8        | 21.2            |
| CdSv   | 1273   | 10.1        | 59.7   | 104.5       | 40.3        | 48.2            |

**Table S6.** Kinetic fitting parameters for MWC-3 and  $CdS_v$  at 1273 nm wavelengths upon 500 nm excitation.

| Sample | λ (nm) | $\tau_1/ps$ | A <sub>1</sub> (%) | $	au_2/ps$ | A <sub>2</sub> (%) | τ <sub>aver</sub> /ps |
|--------|--------|-------------|--------------------|------------|--------------------|-----------------------|
| MWC-3  | 1273   | 4.1         | 59.5               | 106        | 40.5               | 45.4                  |
| CdSv   | 1273   | NA          | NA                 | NA         | NA                 | NA*                   |

Note: NA\* means that there is no absorption peak at 1273 nm for the corresponding sample, so it is not applicable (NA).

## References

[1] Y. Lei, K.H. Ng, Y. Zhu, Y. Zhang, Z. Li, S. Xu, J. Huang, J. Hu, Z. Chen, W. Cai,Y. Lai, Chem. Eng. J., 452 (2023) 139325.

[2] D. Gao, B. Zhao, L. Wang, E. Aslan, I. Hatay Patir, J. Yu, H. Yu, Chem. Eng. J., 449 (2022) 137803.

[3] D. Gao, P. Deng, J. Zhang, L. Zhang, X. Wang, H. Yu, J. Yu, Angew. Chem., Int. Ed., 62 (2023) e202304559.

[4] B. Wang, S. He, L. Zhang, X. Huang, F. Gao, W. Feng, P. Liu, Appl. Catal. B: Environ., 243 (2019) 229-235.

[5] W. Zhong, D. Gao, P. Wang, X. Wang, H. Yu, Appl. Catal. B: Environ., 319 (2022)121910.

[6] Y. Jia, Z. Wang, X.-Q. Qiao, L. Huang, S. Gan, D. Hou, J. Zhao, C. Sun, D.-S. Li, Chem. Eng. J., 424 (2021) 130368.

[7] T. Di, Q. Deng, G. Wang, S. Wang, L. Wang, Y. Ma, J. Mater. Sci. Technol., 124 (2022) 209-216.

[8] X. Yang, W. Liu, C. Han, C. Zhao, H. Tang, Q. Liu, J. Xu, Mater. Today Phys., 15 (2020) 100261.

[9] Y. Lei, X. Wu, S. Li, J. Huang, K.H. Ng, Y. Lai, J. Cleaner Prod., 322 (2021) 129018.