Supplementary Information (SI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2024

# **Promotion Mechanisms of LiBH<sub>4</sub> Dehydrogenation Dominated by**

## **Charge Redistribution**

Weijie Yang<sup>ab\*</sup>, Han Ge<sup>ab</sup>, Tongao Yao<sup>ab</sup>, Qiyong Chen<sup>ab</sup>, Feiyang Liu<sup>ab</sup>, Mingye Huang<sup>ab</sup>, Junwei Sun<sup>c</sup>, Shuai

Dong<sup>ab</sup>, Yanfeng Liu<sup>ab</sup>, Zhengyang Gao<sup>ab</sup>

<sup>a</sup> Department of Power Engineering, North China Electric Power University, Baoding 071003, Hebei, China

<sup>b</sup> Hebei Key Laboratory of Low Carbon and High-Efficiency Power Generation Technology, North China

Electric Power University, Baoding 071003, Hebei, China

° Guoneng Nanjing Electric Power Test & Research Limited

#### \* Corresponding author:

Weijie Yang (yangwj@ncepu.edu.cn)

| Table. S1 Comparison of LiBH <sub>4</sub> lattice parameters in different literatures with this study |       |       |       |  |
|-------------------------------------------------------------------------------------------------------|-------|-------|-------|--|
| Lattice parameters                                                                                    | a (Å) | b (Å) | c (Å) |  |
| Ref <sup>1</sup>                                                                                      | 7.173 | 4.434 | 6.798 |  |
| Ref <sup>2</sup>                                                                                      | 7.140 | 4.290 | 6.850 |  |
| Ref <sup>3</sup>                                                                                      | 7.179 | 4.437 | 6.803 |  |
| This work                                                                                             | 7.141 | 4.431 | 6.748 |  |

#### Table. S2 K-point parameter convergence test

| k-points | Energy (Hartree) | delte E       | Judgment criteria |
|----------|------------------|---------------|-------------------|
| 111      | -50.6701286544   |               | ΔE < 3.7 E-5      |
| 222      | -50.7413257909   | -0.0711971364 |                   |
| 333      | -50.7403112341   | 0.0010145568  |                   |
| 444      | -50.7403822759   | -0.0000710418 |                   |
| 555      | -50.7403802078   | 0.0000020681  |                   |
| 666      | -50.7403785245   | 0.0000016833  |                   |

#### Table. S3 Cutoff parameter convergence test

| Cutoff (Ry) | Energy (Hartree) | delte E      | Judgment criteria |
|-------------|------------------|--------------|-------------------|
| 100         | -48.5668527094   |              | ΔE < 1 E-6        |
| 150         | -48.5214733688   | 0.0453793406 |                   |
| 200         | -48.5007221546   | 0.0207512142 |                   |
| 250         | -48.5002418168   | 0.0004803378 |                   |
| 300         | -48.5001332759   | 0.0001085409 |                   |
| 350         | -48.5001273850   | 0.0000058909 |                   |
| 400         | -48.5001276498   | -0.000002648 |                   |

#### Table. S4 The expansion multiples of different surfaces and the test values of cutoff and rel-cutoff

| surface | cell expansion multiples | cutoff (Ry) | rel-cutoff (Ry) |  |
|---------|--------------------------|-------------|-----------------|--|
| (002)   | 241                      | 700         | 60              |  |
| (020)   | 321                      | 650         | 70              |  |
| (011)   | 331                      | 700         | 60              |  |
| (200)   | 331                      | 800         | 50              |  |
| (101)   | 251                      | 1000        | 50              |  |
| (111)   | 331                      | 550         | 60              |  |

Table. S5 Crystal cell parameters and atomic counts after expansion for the six different surfaces of LiBH<sub>4</sub>

| surface | a (Å)   | b (Å)   | c (Å)  | α(°) | β(°) | γ(°)   | number of | cell type    |
|---------|---------|---------|--------|------|------|--------|-----------|--------------|
|         |         |         |        |      |      |        | atoms     |              |
| (002)   | 14.282  | 17.724  | 32.960 | 90   | 90   | 90     | 384       | orthorhombic |
| (020)   | 20.244  | 14.282  | 24.357 | 90   | 90   | 90     | 288       | orthorhombic |
| (011)   | 21.423  | 24.218  | 21.362 | 90   | 90   | 90     | 432       | orthorhombic |
| (200)   | 13.292  | 20.244  | 31.908 | 90   | 90   | 90     | 432       | orthorhombic |
| (101)   | 19.650  | 22.155  | 23.850 | 90   | 90   | 90     | 480       | orthorhombic |
| (111)   | 25.2121 | 24.2182 | 26.223 | 90   | 90   | 106.82 | 432       | monoclinic   |



Fig. S1 The MSD changes of hydrogen atoms at different temperatures for the LiBH<sub>4</sub> (002).



Fig. S2 The MSD curves of hydrogen atoms at different temperatures for the LiBH<sub>4</sub> (011).



Fig. S3 The MSD curves of hydrogen atoms at different temperatures for the  $LiBH_4$  (020).



Fig. S4 The MSD curves of hydrogen atoms at different temperatures for the LiBH<sub>4</sub> (200).



Fig. S5 RDF of B-H of initial and final structures of 10000fs at different temperatures for the  $LiBH_4$  (002) surface.



Fig. S6 RDF of B-B of initial and final structures of 10000fs at different temperatures for the  $LiBH_4$  (002) surface.



Fig. S7 RDF of B-H of initial and final structures of 10000fs at different temperatures for the  $LiBH_4$  (020) surface.



Fig. S8 RDF of B-B of initial and final structures of 10000fs at different temperatures for the  $LiBH_4$  (020) surface.



Fig. S9 RDF of B-H of initial and final structures of 10000fs at different temperatures for the  $LiBH_4$  (011) surface.



Fig. S10 RDF of B-B of initial and final structures of 10000fs at different temperatures for the  $LiBH_4$  (011) surface.



Fig. S11 RDF of B-H of initial and final structures of 10000fs at different temperatures for the  $LiBH_4$  (200) surface.



Fig. S12 RDF of B-B of initial and final structures of 10000fs at different temperatures for the  $LiBH_4$  (200) surface.



**Fig. S13** The MSD curves of both Li and H along with time at different temperatures for the (002). The dashed line represents the variation of H, while the solid line represents the variation of Li.



**Fig. S14** The MSD curves of both Li and H along with time at different temperatures for the (020) surface. The dashed line represents the variation of H, while the solid line represents the variation of Li.



**Fig. S15** The MSD curves of both Li and H along with time at different temperatures for the (011) surface. The dashed line represents the variation of H, while the solid line represents the variation of Li.



**Fig. S16** The MSD curves of both Li and H along with time at different temperatures for the (200) surface. The dashed line represents the variation of H, while the solid line represents the variation of Li.



**Fig. S17** The MSD curves of both Li and H along with time at different temperatures for the (101) surface. The dashed line represents the variation of H, while the solid line represents the variation of Li.



Fig. S18 The relationship of dehydrogenation barrier of  $LiBH_4$  (002) surface and Mayer average bond order of the B-H bonds in the surface layer.



**Fig. S19** Electron density difference of doped transition metal (a)-(f) Ti, V, Cr, Mn, Fe and Cu. The yellow and blue isosurface indicate electron accumulation and loss, respectively. The result is plotted with an isovalue of 0.001 e Å<sup>-3</sup>, the red dot represents the position of transition metals and the red arrows represent the direction of electron transfer, white, yellow and green spheres represent H, Li, and B respectively.



Fig. S20 The relationship between dehydrogenation barrier of  $LiBH_4$  (002) and -ICOHP in the system of Li vacancy.



Fig. S21 The relationship between dehydrogenation barrier of  $LiBH_4$  (002) and -ICOHP in the system of TM doping.



Table. S6 AIMD simulation dynamic graphs of different surfaces of LiBH<sub>4</sub>



**Note:** the red sphere is Li, the connection of the green stick is B (for the convenience of highlighting the movement of H and Li, B is not displayed in a sphere), and the white sphere is H.

The

concentration of

Movies

# Li vacancy

1.56%

3.13%



4.69%

6.25%



7.81%

9.38%



Note: the red sphere is Li, the connection of the green stick is B (for the convenience of highlighting the movement of H and Li, B is not displayed in a sphere), and the white sphere is H.

### References

- 1 A. Züttel, S. Rentsch, P. Fischer, P. Wenger, P. Sudan, P. Mauron and C. Emmenegger, *Journal of Alloys and Compounds*, 2003, **356-357**, 515-520.
- J. K. Kang, S. Y. Kim, Y. S. Han, R. P. Muller and W. A. Goddard, III, *Applied Physics Letters*, 2005, 87, 111904.
- J. P. Soulié, G. Renaudin, R. Černý and K. Yvon, Journal of Alloys and Compounds, 2002, 346, 200-205.