Supplementary information

Oxygen-defective ruthenium oxide as an efficient and durable electrocatalyst for acidic oxygen evolution reaction

Jingwei Wang,^{+a,b} Lejuan Cai,^{+a} Zhipeng Yu,^{*a,} Hao Tan,^a Xinyi Xiang,^a Kaiyang Xu,^a Yang Chao,^a Sitaramanjaneya Mouli Thalluri,^c Fei Lin,^a Haoliang Huang,^a Chenyue Zhang,^a Yang Zhao,^a Wenlong Wang,^{*a,b} and Lifeng Liu,^{*a}

^a Songshan Lake Materials Laboratory (SLAB), Dongguan 523808, P.R. China

^b Institute of Physics, Chinese Academy of Sciences, Beijing 100090, P. R. China

^c International Iberian Nanotechnology Laboratory (INL), 4715-330 Braga, Portugal

⁺ J.W.W. and L.J.C. contributed equally to this work.

* To whom correspondence should be made.

E-mail: <u>zhipeng.yu@inl.int</u> (Z. P. Yu); <u>wwl@iphy.ac.cn</u> (W. L. Wang); <u>liu.lifeng@sslab.org.cn</u> (L. Liu)

Supplementary Figures

Fig. S1 XRD patterns of HP-RuO_x, P-RuO_x, H-RuO_x and commercial RuO₂. For reference, the standard diffraction patterns of rutile RuO₂ (JCPD No. 40-1290) is also presented.

Fig. S2 Raman spectra of HP-RuO_x, P-RuO_x, H-RuO_x and commercial RuO₂.

Fig. S3 (a) TEM image, (b) HRTEM image, (c) HAAF-STEM-EDS elemental maps of Ru and O for P-RuO_x.

Fig. S4 (a) TEM image, (b) HRTEM image, (c) HAAF-STEM-EDS elemental maps of Ru and O for H-RuO_x.

Fig. S5 Nanoparticle size distribution of (a) $P-RuO_x$ and (b) $H-RuO_x$.

Fig. S6 Inverse fast Fourier transform (IFFT) pattern of **Fig. 1f**. The yellow solid and red dashed lines denote the ideal and actual lattice alignment orientations, respectively. The deviation between ideal and actual situations indicates lattice distortion in HP-RuO_x, while the white T-shaped marks represent lattice dislocations.

Fig. S7 (a) OER polarization curves and (b) corresponding Tafel slopes of HP-RuO_x at different mass loadings.

Fig. S8 OER polarization curves for different catalysts loaded on the Ti@Au felt recorded in 0.05 M H₂SO₄. The overpotentials (η_{10}) needed to deliver 10 mA cm⁻² for HP-RuO_x, P-RuO_x, H-RuO_x and commercial RuO₂ are 243, 258, 291 and 352 mV, respectively. The loading density is 1 mg cm⁻² for all catalysts.

Fig. S9 Cyclic voltammograms recorded for (a) HP-RuO_x, (b) P-RuO_x, (c) H-RuO_x and (d) commercial RuO₂ in the potential region of 0.85 - 0.95 V vs. RHE at scan rates from 20 to 100 mV s⁻¹.

Fig. S10 (a) ECSA values, (b) ECSA normalized specific activity and (c) TOF at the overpotential of 300 - 450 mV of HP-RuO_x, P-RuO_x, H-RuO_x, and commercial RuO₂.

Fig. S11 N₂ adsorption/desorption isotherms of (a) HP-RuO_x, (b) P-RuO_x, (c) H-RuO_x, and (d) commercial RuO₂.

Fig. S12 Pore size and pore volume analyses of (a) HP-RuO_x, (b) P-RuO_x, (c) H-RuO_x, and (d) commercial RuO₂, based on the N₂ desorption isotherms using the BJH method.

Fig. S13 EIS Nyquist plots of HP-RuO_x, P-RuO_x, H-RuO_x, and commercial RuO₂. The inset shows an equivalent circuit model, in which CPE, R_{ct} , and R_s are constant phase element, charge transfer resistance and equivalent series resistance, respectively. The quantitative fitting results are presented in **Table S1**.

Fig. S14 Digital photographs of (a) a blank carbon paper, (b) a blank Ti@Au felt, (c) a commercial RuO₂ catalyst-loaded carbon paper, and (d) a commercial RuO₂ catalyst-loaded Ti@Au felt. (e, f) The commercial RuO₂ catalyst-loaded carbon paper after a long-term OER test at 100 mA cm⁻² for 4 h. The carbon paper was oxidized and became rather fragile. (The carbon paper was broken upon a very gentle touch by tweezers) (g, h) The commercial RuO₂ catalyst-loaded Ti@Au felt after a long-term OER test at 100 mA cm⁻² for 4 h. Although the Au on the surface was partially oxidized and dissolved, the electrode still maintained mechanically robust and showed good electrical conductivity.

Fig. S15 Chronopotentiometry curve of commercial RuO_2 catalysts loaded on a carbon paper current collector for OER in 0.05 M H_2SO_4 at 100 mA cm⁻² (loading: 1.0 mg_{cat} cm⁻²).

Fig. S16 Chronopotentiometry curves of the HP-RuO_x catalysts for the OER tested in 0.05 M H_2SO_4 at 100 mA cm⁻² with the catalyst loading of (a) 0.5 mg_{cat} cm⁻² and (b) 2.0 mg_{cat} cm⁻².

Fig. S17 EXAFS fitting of the first-shell coordination for (a) HP-RuO_x, (b) P-RuO_x, (C) H-RuO_x, and (d) commercial RuO₂ catalysts. The quantification results are shown in **Table S3**.

Fig. S18 XPS survey spectra of HP-RuO_x, P-RuO_x, H-RuO_x and commercial RuO₂.

Fig. S19 (a) High-resolution Ru 3p spectra of P-RuO_x, H-RuO_x, and commercial RuO₂. (b) High-resolution O 1s spectra of P-RuO_x, H-RuO_x, and commercial RuO₂. O_L – lattice oxygen, O_V – oxygen vacancy, and O_W – adsorbed oxygen from water.

Fig. S20 DEMS measurements of (a) HP-RuO_x and (b) commercial RuO₂ in 0.05 M H₂SO₄ containing ¹⁸OH₂. DEMS measurements of ¹⁸O-labeled (c) HP-RuO_x and (d) commercial RuO₂ in 0.05 M H₂SO₄ prepared with ¹⁶OH₂.

Fig. S21 The model of a perfect $RuO_2(110)$ surface. The red and dark green spheres represent O and Ru atoms, respectively. The outermost O atoms are bridge atoms, labeled as O_{br} , and other O atoms are threefold, labeled as O_{3f} .

Fig. S22 Top views of (a) the defect-free RuO_2 model, (b - c) two $1O_v$ - RuO_x models, and (d - g) four possible $2O_v$ - RuO_x models. n and p stand for different relative positions between Ru atom and oxygen vacancies.

Fig. S23 The formation energy values for the (a) 10_v -RuO_x and (b) 20_v -RuO_x model catalysts shown in Fig. S22.

Fig. S24 Bader charge analysis of the Ru sites on (a) pristine RuO_2 , (b) $1O_v$ -RuO_x and (c) $2O_v$ -RuO_x. The dark green, yellow and blue spheres represent unsaturated Ru sites on the RuO₂ (110) surface, Ru sites around a single oxygen vacancy (Ru($1O_v$)) and Ru sites surrounded by dual oxygen vacancies (Ru($2O_v$)). The red and white spheres denote O atoms and oxygen vacancies (O_v), respectively.

Fig. S25 Two-dimensional charge density contour plots for Ru and O in (a) defect-free RuO_2 and (b) $2O_v$ -RuO_x.

Fig. S26 Partial density of states (PDOS) analysis of the Ru sites on $1O_v$ -RuO_x. Ru and Ru($1O_v$) represent the unsaturated Ru sites on the RuO₂ (110) surface and Ru sites around a single oxygen vacancy, respectively.

Fig. S27 Top view images showing H_2O adsorption on the (a) Ru site of RuO_2 , (b) $Ru(2O_v)$ site of $2O_v$ -RuO_x, and (c) O_v site of $2O_v$ -RuO_x.

Fig. S28 The charge density difference plot for H_2O adsorption on the Ru sites of RuO_2 . The yellow and cyan regions represent electron accumulation and depletion, respectively. The isosurface value is 0.001 e/Bohr³.

Fig. S29 The Gibbs free-energy diagram for the OER on $1O_v$ -RuO_x.

Fig. S30 Digital photograph showing the PEM single-cell electrolyzer used in our experiments.

Fig. S31 XRD patterns of HP-RuO_x catalysts before and after the OER at 500 mA cm⁻² for 150 h in MEA.

Fig. S32 (a) XPS survey spectra, high-resolution (b) Ru 3p and (c) O 1s XPS spectra of HP-RuO_x catalysts before and after the OER at 500 mA cm⁻² for 150 h in MEA. The F signal in (a) comes from the remanent Nafion used to prepare the catalyst ink. Since Nafion ($C_7HF_{13}O_5SC_2F_4$) is very difficult to be removed completely, it may also influence the (quantitative) analysis of the O 1s spectrum after the stability test.

Supplementary Tables:

Sample	R _s (Ω)	R _{ct} (Ω)
Commercial RuO ₂	54.1	80.1
H-RuO _x	51.8	32.9
P-RuO _x	51.3	30.0
HP-RuO _x	51.3	29.2

Table S1. EIS Fitting results of R_s and R_{ct} values for different samples.

R_s – equivalent series resistance.

R_{ct} – charge transfer resistance.

Table S2. Summary of some Ru-based OER electrocatalysts reported recently in the literature,which were tested in acidic electrolyte.

Catalysts	Electrolyte	Activity	Stability	Reference
		(<i>η</i> 10, mV)		
HP-RuO _x	0.05 M H ₂ SO ₄	237	140 h @ 100 mA cm ⁻²	This work
RuO ₂ NSs	0.1 M HClO ₄	255	6 h @ 10 mA cm ⁻²	Ref. S1
a/c-RuO₂	0.1 M HClO ₄	220	60 h @ 10 mA cm ⁻²	Ref. S2
Ru₁-Pt₃Cu	0.1 M HClO ₄	220	28 h @ 10 mA cm ⁻²	Ref. S3
Co-Rulr	0.1 M HClO ₄	235	25 h @ 10 mA cm ⁻²	Ref. S4
RuB ₂	0.5 M H ₂ SO ₄	223	45 h @ 10 mA cm ⁻²	Ref. S5
Rulr@CoNC	0.05 M H ₂ SO ₄	239	25 h @ 10 mA cm ⁻²	Ref. S6
Ru@IrO _x	0.05 M H ₂ SO ₄	282	24 h @ 10 mA cm ⁻²	Ref. S7
Ru-exchanged Cu-	0.5 M H ₂ SO ₄	188	8 h @ 10 mA cm ⁻²	Ref. S8
BTC				
$Y_{1.7}Sr_{0.3}Ru_2O_7$	0.5 M H ₂ SO ₄	264	28 h @ 10 mA cm ⁻²	Ref. S9
Ru/RuS ₂	0.5 M H ₂ SO ₄	201	24 h @ 10 mA cm ⁻²	Ref. S10
Ru@MoO(S)₃	0.5 M H ₂ SO ₄	292	24 h @ 10 mA cm ⁻²	Ref. S11
RuO ₂ -WC NPs	0.5 M H ₂ SO ₄	347	10 h @ 10 mA cm ⁻²	Ref. S12
La-RuO ₂	0.5 M H ₂ SO ₄	208	28 h @ 10 mA cm ⁻²	Ref. S13
RuCoO _x @LLCF	0.1 M HClO ₄	256	110 h @ 10 mA cm ⁻²	Ref. S14
Y ₂ MnRuO ₇	0.1 M HClO ₄	270	45 h @ 10 mA cm ⁻²	Ref. S15
Ru/Se-RuO ₂	0.5 M H ₂ SO ₄	190	24 h @ 10 mA cm ⁻²	Ref. S16
$Ru_{0.85}Zn0.15O_{2-\delta}$	0.5 M H ₂ SO ₄	190	50 h @ 10 mA cm ⁻²	Ref. S17
RuTe ₂ PNRs	0.5 M H ₂ SO ₄	245	24 h @ 10 mA cm ⁻²	Ref. S18
C-RuO ₂ -RuSe-5	0.5 M H ₂ SO ₄	212	50 h @ 10 mA cm ⁻²	Ref. S19
SnRuO _x	0.5 M H ₂ SO ₄	194	250 h @ 100 mA cm ⁻²	Ref. S20
L-Ru	0.5 M H ₂ SO ₄	202	10 h @ 10 mA cm ⁻²	Ref. S21
RuNi₂©G-250	0.5 M H ₂ SO ₄	227	24 h @ 10 mA cm ⁻²	Ref. S22
Mg-RuO2	0.5 M H ₂ SO ₄	228	30 h @ 10 mA cm ⁻²	Ref. S23
$Co_{0.11}Ru_{0.89}O_{2-\delta}$	0.5 M H ₂ SO ₄	169	50 h @ 10 mA cm ⁻²	Ref. S24

Βυ ΓοΟ _ν -ΒυΓο-ΝΓ	0.5 M H ₂ SO ₄	228	12 h @ 10 mA cm ⁻²	Ref S25
	0.5 11112504	220	12 11 (2 10 11) (611	11011 323
IrRu/T ₉₀ G ₁₀	0.1 M HClO ₄	254	24 h @ 10 mA cm ⁻²	Ref. S26
RuMn	0.5 M H ₂ SO ₄	270	720 h @ 10 mA cm ⁻²	Ref. S27
Ru/Co-N-C	0.5 M H ₂ SO ₄	232	24 h @ 10 mA cm ⁻²	Ref. S28
Ru/MnO₂	0.1 M HClO ₄	161	200 h @ 10 mA cm ⁻²	Ref. S29
$Mn_{0.73}Ru_{0.27}O_{2-\delta}$	0.5 M H ₂ SO ₄	208	10 h @ 10 mA cm ⁻²	Ref. S30
In _{0.17} Ru _{0.83} O ₂ -350	0.5 M H ₂ SO ₄	177	20 h @ 10 mA cm ⁻²	Ref. S31
Ru ₅ W ₁ O _x	0.5 M H ₂ SO ₄	227	550 h @ 10 mA cm ⁻²	Ref. S32
Co _{cv} /np-RuO ₂ -250	0.5 M H ₂ SO ₄	169	20 h @ 10 mA cm ⁻²	Ref. S33
Ru/RuO ₂ -Co ₃ O ₄	0.1 M HClO ₄	226	20 h @ 10 mA cm ⁻²	Ref. S34
H/d-MnO _x /RuO₂	0.5 M H ₂ SO ₄	178	40 h @ 10 mA cm ⁻²	Ref. S35
Nd _{0.1} RuO _x	0.5 M H ₂ SO ₄	211	25 h @ 10 mA cm ⁻²	Ref. S36
Ru-VO ₂	0.5 M H ₂ SO ₄	300	125 h @ 10 mA cm ⁻²	Ref. S37
(Ru-W)O _x	0.5 M H ₂ SO ₄	170	300 h @ 10 mA cm ⁻²	Ref. S38
Ru-O-Mn/CPD	0.5 M H ₂ SO ₄	196	30 h @ 10 mA cm ⁻²	Ref. S39
RuO ₂ /CeO ₂ @C	0.5 M H ₂ SO ₄	170	100 h @ 50 mA cm ⁻²	Ref. S40
Ru-UiO-67-bpydc	0.5 M H ₂ SO ₄	200	140 h @ 50 mA cm ⁻²	Ref. S41
Bi _{0.15} Ru _{0.85} O ₂	0.5 M H ₂ SO ₄	200	100 h @ 10 mA cm ⁻²	Ref. S42
RuCoO _x	1.0 M HClO ₄	200	100 h @ 10 mA cm ⁻²	Ref. S43
Nb _{0.1} Ru _{0.9} O ₂	0.5 M H ₂ SO ₄	204	360 h @ 200 mA cm ⁻²	Ref. S44
py-RuO₂:Zn	0.5 M H ₂ SO ₄	212	1000 h @ 10 mA cm ⁻²	Ref. S45
Re _{0.06} Ru _{0.94} O ₂	0.1 M HClO ₄	190	200 h @ 10 mA cm ⁻²	Ref. S46
Li _{0.52} RuO2	0.5 M H ₂ SO ₄	156	70 h @ 10 mA cm ⁻²	Ref. S47
Bi _x Er _{2-x} Ru ₂ O ₇	0.1 M HClO ₄	180	100 h @ 100 mA cm ⁻²	Ref. S48
Ru/TiO _x	0.5 M H ₂ SO ₄	174	900 h @ 10 mA cm ⁻²	Ref. S49
Ni-RuO ₂	0.1 M HClO ₄	214	200 h @ 10 mA cm ⁻²	Ref. S50
Se-RuO ₂	0.5 M H ₂ SO ₄	166	48 h @ 10 mA cm ⁻²	Ref. S51
RuFe@CF	0.5 M H ₂ SO ₄	188	620 h @ 10 mA cm ⁻²	Ref. S52
m-RuO ₂	0.5 M H ₂ SO ₄	230	4 h @ 10 mA cm ⁻²	Ref. S53
MnRuO _x -300	0.5 M H ₂ SO ₄	231	780 h @ 100 mA cm ⁻²	Ref. S54

GB-RuO ₂	0.1 M HClO ₄	187	550 h @ 10 mA cm ⁻²	Ref. S55
RuSnO _x	0.1 M HClO ₄	184	150 h @ 10 mA cm ⁻²	Ref. S56
Ru-RuO ₂ /Mn ₃ O ₄ /CP	0.5 M H ₂ SO ₄	182	400 h @ 10 mA cm ⁻²	Ref. S57
RuMnO _x	0.5 M H ₂ SO ₄	240	2600 h @ 10 mA cm ⁻²	Ref. S58
MD-RuO ₂ -BN	0.5 M H ₂ SO ₄	196	24 h @ 10 mA cm ⁻²	Ref. S59
Si-RuO ₂ -0.1	0.1 M HClO ₄	226	800 h @ 10 mA cm ⁻²	Ref. S60
RuMnO _x MD-RuO ₂ -BN Si-RuO ₂ -0.1	0.5 M H ₂ SO ₄ 0.5 M H ₂ SO ₄ 0.1 M HClO ₄	240 196 226	2600 h @ 10 mA cm ⁻² 24 h @ 10 mA cm ⁻² 800 h @ 10 mA cm ⁻²	Ref. S58 Ref. S59 Ref. S60

Sample	CN	R (Å)	σ² (Ų)	ΔE ₀	R _{factor}
Commercial RuO ₂	6.0	1.97	0.002	-2.99	0.012
H-RuO _x	5.92	1.97	0.002	-3.12	0.010
P-RuO _x	5.51	1.97	0.002	-3.60	0.010
HP-RuO _x	5.26	1.97	0.001	-4.29	0.021

Table S3. Ligand structure parameters derived from EXAFS spectrum fitting.

CN – coordination number

R – bond distance

 σ^2 – Debye-Waller factors

 ΔE_0 – the inner potential correction

R_{factor} – goodness of fit

Sample	Ru ³⁺	Ov
Commercial RuO ₂	28.6 %	30.5 %
H-RuO _x	32.9 %	34.6 %
P-RuO _x	38.3 %	39.3 %
HP-RuO _x	42.9 %	41.0 %

Table S4. Quantitative XPS analyses of Ru^{3+} species and the oxygen vacancy (O_V).

Table S5. Gibbs free energy values of H_2O adsorption on defect-free RuO_2 , $Ru(2O_v)$ of $2O_{v}$ - RuO_x , and O_v of $2O_v$ - RuO_x .

	Н	ZPE	T × S	G	ΔG
	(eV)	(eV)	(T = 298.15 K)	(eV)	(eV)
RuO ₂	-714.06	0.68	0.11	-713.49	-0.96
Ru(2O _v)	-703.06	0.68	0.11	-702.49	-0.93
Ov	-702.82	0.67	0.13	-702.28	-0.72

H – enthalpy

ZPE – zero-point energy

 $T \times S$ – entropy contribution

G – Gibbs free energy

 ΔG – the change of Gibbs free energy induced by H2O adsorption

U = 0 V	∆G (eV)	∆G (eV)	∆G (eV)
	RuO ₂	10 _v -RuO _x	20 _v -RuO _x
* + H ₂ O → H ₂ O*	-0.97	-0.93	-0.93
H ₂ O* → OH* + H ⁺ + e ⁻	0.68	0.57	0.52
OH* → O*+H ⁺ + e ⁻	0.87	0.88	0.86
$O^* + H_2O \rightarrow O^*(O_v - H_2O)$	-1.09	-1.36	-1.17
$O^*(O_v-H_2O) + H_2O \rightarrow OOH^*(O_v-$	1.33	1.25	1.24
H₂O) + H⁺ + e⁻			
$OOH^*(O_v-H_2O) \rightarrow H_2O^* + O_2 +$	-2.52	-1.99	-1.98
H⁺ + e⁻			

Table S6. Gibbs energy changes of the elementary steps during the OER on RuO_2 , $1O_v$ - RuO_x and $2O_v$ - RuO_x .

References:

- 1. S. Laha, Y. Lee, F. Podjaski, D. Weber, V. Duppel, L. M. Schoop, F. Pielnhofer, C. Scheurer, K. Müller, U. Starke, K. Reuter and B. V. Lotsch, Adv. Energy Mater., 2019, **9**, 1803795.
- 2. L. J. Zhang, H. Jang, H. H. Liu, M. G. Kim, D. J. Yang, S. G. Liu, X. E. Liu and J. Cho, Angew. Chem. Int. Ed., 2021, **60**, 18821-18829.
- Y. C. Yao, S. L. Hu, W. X. Chen, Z. Q. Huang, W. C. Wei, T. Yao, R. R. Liu, K. T. Zang, X. Q. Wang, G. Wu, W. J. Yuan, T. W. Yuan, B. Q. Zhu, W. Liu, Z. J. Li, D. S. He, Z. G. Xue, Y. Wang, X. S. Zheng, J. C. Dong, C. R. Chang, Y. X. Chen, X. Hong, J. Luo, S. Q. Wei, W. X. Li, P. Strasser, Y. E. Wu and Y. D. Li, Nat. Catal., 2019, 2, 304-313.
- 4. J. Q. Shan, T. Ling, K. Davey, Y. Zheng and S. Z. Qiao, Adv. Mater., 2019, **31**, 1900510.
- D. Chen, T. T. Liu, P. Y. Wang, J. H. Zhao, C. T. Zhang, R. L. Cheng, W. Q. Li, P. X. Ji, Z. H. Pu and S. C. Mu, ACS Energy Lett., 2020, 5, 2909-2915.
- 6. J. Y. Xu, J. J. Li, Z. Lian, A. Araujo, Y. Li, B. Wei, Z. P. Yu, O. Bondarchuk, I. Amorim, V. Tileli, B. Li and L. F. Liu, ACS Catal., 2021, **11**, 3402-3413.
- 7. J. Q. Shan, C. X. Guo, Y. H. Zhu, S. M. Chen, L. Song, M. Jaroniec, Y. Zheng and S. Z. Qiao, Chem, 2019, **5**, 445-459.
- 8. J. W. Su, R. X. Ge, K. M. Jiang, Y. Dong, F. Hao, Z. Q. Tian, G. X. Chen and L. Chen, Adv. Mater., 2018, **30**, 1801351.
- 9. N. Zhang, C. Wang, J. W. Chen, C. Y. Hu, J. Ma, X. Deng, B. C. Qiu, L. J. Cai, Y. J. Xiong and Y. Chai, ACS Nano, 2021, **15**, 8537-8548.
- J. W. Zhu, Y. Guo, F. Liu, H. W. Xu, L. Gong, W. J. Shi, D. Chen, P. Y. Wang, Y. Yang, C. T. Zhang, J. S. Wu, J. H. Luo and S. C. Mu, Angew. Chem. Int. Ed., 2021, 60, 12328-12334.
- D. Chen, R. H. Yu, D. L. Wu, H. Y. Zhao, P. Y. Wang, J. W. Zhu, P. X. Ji, Z. H. Pu, L. Chen, J. Yu and S. C. Mu, Nano Energy, 2022, **100**, 107445.
- 12. S. C. Sun, H. Jiang, Z. Y. Chen, Q. Chen, M. Y. Ma, L. Zhen, B. Song and C. Y. Xu, Angew. Chem. Int. Ed., 2022, **61**, e202202519.
- 13. Y. Wu, R. Yao, Q. Zhao, J. P. Li and G. Liu, Chem. Eng. J., 2022, 439, 135699.
- 14. L. A. Chong, J. G. Wen, E. R. Song, Z. Z. Yang, I. D. Bloom and W. J. Ding, Adv. Energy Mater., 2023, 13, 2302306.
- D. Galyamin, J. Torrero, I. Rodríguez, M. J. Kolb, P. Ferrer, L. Pascual, M. A. Salam, D. Gianolio, V. Celorrio, M. Mokhtar, D. G. Sanchez, A. S. Gago, K. A. Friedrich, M. A. Peña, J. A. Alonso, F. Calle-Vallejo, M. Retuerto and S. Rojas, Nat. Commun., 2023, 14, 2010.
- 16. K. Huang, C. L. Lin, G. Q. Yu, P. Du, X. Y. Xie, X. He, Z. C. Zheng, N. Sun, H. L. Tang, X. B. Li, M. Lei and H. Wu, Adv. Funct. Mater., 2023, **33**, 2211102.
- 17. L. Q. Hou, Z. J. Li, H. Jang, Y. Wang, X. M. Cui, X. M. Gu, M. G. Kim, L. G. Feng, S. G. Liu and X. Liu, Adv. Energy Mater., 2023, **13**, 2300177.
- 18. J. Wang, L. L. Han, B. L. Huang, Q. Shao, H. L. L. Xin and X. Q. Huang, Nat. Commun., 2019, **10**, 5692.
- 19. J. Wang, C. Cheng, Q. Yuan, H. Yang, F. Q. Meng, Q. H. Zhang, L. Gu, J. L. Cao, L. G. Li, S. C. Haw, Q. Shao, L. Zhang, T. Cheng, F. Jiao and X. Q. Huang, Chem, 2022, **8**, 1673-1687.
- 20. Z. P. Shi, J. Li, Y. B. Wang, S. W. Liu, J. B. Zhu, J. H. Yang, X. Wang, J. Ni, Z. Jiang, L. J. Zhang, Y. Wang, C. P. Liu, W. Xing and J. J. Ge, Nat. Commun., 2023, **14**, 843.
- 21. J. Q. Wang, C. Xi, M. Wang, L. Shang, J. Mao, C. K. Dong, H. Liu, S. A. Kulinich and X. W. Du, ACS Catal., 2020, **10**, 12575-12581.
- 22. X. J. Cui, P. J. Ren, C. Ma, J. Zhao, R. X. Chen, S. M. Chen, N. P. Rajan, H. B. Li, L. Yu, Z. Q. Tian and D. H. Deng, Adv. Mater., 2020, **32**, 1908126.
- 23. Z. Li, S. Wang, Y. Y. Tian, B. H. Li, H. J. Yan, S. Zhang, Z. M. Liu, Q. J. Zhang, Y. C. Lin and L. Chen, Chem. Commun., 2020, **56**, 1749-1752.
- 24. Y. Y. Tian, S. Wang, E. Velasco, Y. P. Yang, L. J. Cao, L. J. Zhang, X. Li, Y. C. Lin, Q. J. Zhang and L. Chen, Iscience, 2020, **23**, 100756.

- 25. M. Chen, Z. H. Fan, L. H. Ai and J. Jiang, Appl. Surf. Sci., 2021, 564, 150478.
- 26. I. G. Kim, A. Lim, J. H. Jang, K. Y. Lee, I. W. Nah and S. Park, J. Power Sources, 2021, 501, 230002.
- 27. L. An, F. Yang, C. H. Fu, X. Y. Cai, S. Y. Shen, G. F. Xia, J. Li, Y. Z. Du, L. X. Luo and J. L. Zhang, Adv. Funct. Mater., 2022, **32**, 2200131.
- 28. C. L. Rong, X. J. Shen, Y. Wang, L. Thomsen, T. W. Zhao, Y. B. Li, X. Y. Lu, R. Amal and C. Zhao, Adv. Mater., 2022, **34**, 2110103.
- 29. C. Lin, J. L. Li, X. P. Li, S. Yang, W. Luo, Y. J. Zhang, S. H. Kim, D. H. Kim, S. S. Shinde, Y. F. Li, Z. P. Liu, Z. Jiang and J. H. Lee, Nat. Catal., 2021, **4**, 1012-1023.
- 30. K. X. Wang, Y. L. Wang, B. Yang, Z. J. Li, X. T. Qin, Q. H. Zhang, L. C. Lei, M. Qiu, G. Wu and Y. Hou, Energy Environ. Sci., 2022, **15**, 2356-2365.
- S. Chen, C. L. Wang, F. Y. Gao, Y. Yang, M. X. Huang, H. G. Tong, Z. Y. Cheng, P. C. Wang, P. C. Wang, J. W. Tu, X. H. Zeng and Q. W. Chen, J. Mater. Chem. A, 2022, 10, 3722-3731.
- 32. Y. Z. Wen, C. Liu, R. Huang, H. Zhang, X. B. Li, F. P. G. de Arquer, Z. Liu, Y. Y. Li and B. Zhang, Nat. Commun., 2022, **13**, 4871.
- 33. Q. L. Wu, K. Jiang, J. H. Han, D. C. Chen, M. Luo, J. Lan, M. Peng and Y. W. Tan, Sci. China Mater., 2022, **65**, 1262-1268.
- 34. T. T. Wang, Z. J. Li, H. Jang, M. G. Kim, Q. Qin and X. Liu, ACS Sustainable Chem. Eng., 2023, **11**, 5155-5163.
- 35. Z. X. Wu, Y. L. Wang, D. Z. Liu, B. W. Zhou, P. F. Yang, R. Z. Liu, W. P. Xiao, T. Y. Ma, J. S. Wang and L. Wang, Adv. Funct. Mater., 2023, **33**, 2307010.
- L. Li, G. W. Zhang, J. W. Xu, H. J. He, B. Wang, Z. M. Yang and S. C. Yang, Adv. Funct. Mater., 2023, 33, 2213304.
- Z. Q. Niu, Z. K. Lu, Z. L. Qiao, S. T. Wang, X. H. Cao, X. D. Chen, J. M. Y. Yun, L. R. Zheng and D. P. Cao, Adv. Mater., 2024, 36, 2310690.
- 38. L. M. Deng, S. F. Hung, Z. Y. Lin, Y. Zhang, C. C. Zhang, Y. X. Hao, S. Y. Liu, C. H. Kuo, H. Y. Chen, J. Peng, J. Z. Wang and S. J. Peng, Adv. Mater., 2023, **35**, 2305939.
- 39. T. L. Feng, J. K. Yu, D. Yue, H. Q. Song, S. Y. Tao, G. I. N. Waterhouse, S. Y. Lu and B. Yang, Appl. Catal. B-Environ., 2023, **328**, 122546.
- 40. Y. Wu, R. Yao, K. Y. Zhang, Q. Zhao, J. P. Li and G. Liu, Chem. Eng. J., 2024, 479, 147939.
- 41. N. Yao, H. N. Jia, J. Zhu, Z. P. Shi, H. J. Cong, J. J. Ge and W. Luo, Chem, 2023, **9**, 1882-1896.
- 42. L. Q. Wu, Q. Liang, J. Y. Zhao, J. Zhu, H. N. Jia, W. Zhang, P. Cai and W. Luo, Chinese J. Catal., 2023, 55, 182-190.
- 43. W. J. Zhu, F. Yao, K. J. Cheng, M. T. Zhao, C. J. Yang, C. L. Dong, Q. M. Hong, Q. Jiang, Z. C. Wang and H. F. Liang, J. Am. Chem. Soc., 2023, **145**, 17995-18006.
- H. Liu, Z. Zhang, J. J. Fang, M. X. Li, M. G. Sendeku, X. Wang, H. Y. Wu, Y. P. Li, J. J. Ge, Z. B. Zhuang, D. J. Zhou, Y. Kuang and X. M. Sun, Joule, 2023, 7, 558-573.
- 45. D. F. Zhang, M. N. Li, X. Yong, H. Q. Song, G. I. N. Waterhouse, Y. F. Yi, B. J. Xue, D. L. Zhang, B. Z. Liu and S. Y. Lu, Nat. Commun., 2023, **14**, 2517.
- 46. H. Y. Jin, X. Y. Liu, P. F. An, C. Tang, H. M. Yu, Q. H. Zhang, H. J. Peng, L. Gu, Y. Zheng, T. S. Song, K. Davey, U. Paik, J. C. Dong and S. Z. Qiao, Nat. Commun., 2023, **14**, 354.
- 47. Y. Qin, T. T. Yu, S. H. Deng, X. Y. Zhou, D. M. Lin, Q. Zhang, Z. Y. Jin, D. F. Zhang, Y. B. He, H. J. Qiu, L. H. He, F. Y. Kang, K. K. Li and T. Y. Zhang, Nat. Commun., 2022, **13**, 3784.
- 48. G. Zhou, P. F. Wang, B. Hu, X. Y. Shen, C. C. Liu, W. X. Tao, P. L. Huang and L. Z. Liu, Nat. Commun., 2022, **13**, 4106.
- 49. L. X. Zhou, Y. F. Shao, F. Yin, J. Li, F. Y. Kang and R. T. Lv, Nat. Commun., 2023, 14, 7644.
- Z. Y. Wu, F. Y. Chen, B. Lie, S. W. Yu, Y. Z. Finfrock, D. M. Meira, Q. Q. Yan, P. Zhu, M. X. Chen, T. W. Song, Z. Yin, H. W. Liang, S. Zhang, G. Wang and H. Wang, Nat. Mater., 2023, 22, 100-108.
- 51. X. Han, M. Y. Jin, T. T. Chen, T. Chou, J. D. Chen, S. Wang, Y. Yang, J. Wang and H. L. Jin, ACS Mater. Lett., 2024, **6**, 748-755.
- 52. J. H. Chen, Y. R. Ma, T. Huang, T. L. Jiang, S. Park, J. W. Xu, X. Y. Wang, Q. Peng, S. Liu, G. M. Wang and W. Chen, Adv. Mater., 2024, **36**, 2312369.

- 53. G. Q. Zhao, W. Guo, M. M. Shan, Y. Y. Fang, G. M. Wang, M. X. Gao, Y. F. Liu, H. G. Pan and W. P. Sun, Adv. Mater., 2024, **36**, 2404213.
- 54. J. J. Zhang, L. L. Xu, X. X. Yang, S. Guo, Y. F. Zhang, Y. Zhao, G. Wu and G. Li, Angew. Chem. Int. Ed., 2024, **63**, e202405641.
- 55. W. D. He, X. H. Tan, Y. Y. Guo, Y. H. Xiao, H. Cui and C. X. Wang, Angew. Chem. Int. Ed., 2024, **136**, e202405798.
- 56. Y. M. Xu, Z. X. Mao, J. F. Zhang, J. P. Ji, Y. Zou, M. Y. Dong, B. Fu, M. Q. Hu, K. D. Zhang, Z. Y. Chen, S. Chen, H. J. Yin, P. R. Liu and H. J. Zhao, Angew. Chem. Int. Ed., 2024, **63**, e202316029.
- 57. X. Long, B. Zhao, Q. Q. Zhao, X. X. Wu, M. N. Zhu, R. F. Feng, M. Shakouri, Y. Zhang, X. X. Xiao, J. J. Zhang, X. Z. Fu and J. L. Luo, Appl. Catal. B-Environ., 2024, **343**, 123559.
- 58. L. An, X. Y. Cai, F. Yang, J. B. You, S. Yuan, L. T. Zhao, C. F. Zhao, L. X. Luo, X. H. Yan, S. Y. Shen and J. L. Zhang, Appl. Surf. Sci., 2024, **652**, 159251.
- 59. D. Chen, R. H. Yu, K. S. Yu, R. H. Lu, H. Y. Zhao, J. X. Jiao, Y. T. Yao, J. W. Zhu, J. S. Wu and S. C. Mu, Nat. Commun., 2024, **15**, 3928.
- 60. X. Y. Ping, Y. D. Liu, L. X. Zheng, Y. Song, L. Guo, S. G. Chen and Z. D. Wei, Nat. Commun. , 2024, 15, 2501.