Supporting Information

Installing Active Metal Species in Covalent Triazine Framework for Highly Efficient and Selective Photocatalytic CO² Reduction

Yiqing Jiang,^a Liangliang Xiong,^a Shien Guo,b, Chao Xu,^a Jiaxin Wang,^a Xiaomin Wu,^a Yuting Xiao,a,* Renjie Songa,**

^aKey Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, Republic of China; Email: yutingxiao9@sina.com, srj0731@hnu.edu.cn ^bSchool of Chemical Engineering, Jiangxi Normal University, Nanchang 330022, People's Republic of China; Email: guoshien@jxnu.edu.cn

Contents

Materials

2,9-diformyl-1,10-phenanthroline, 2,4,6-tris (4-aminophenyl)-1,3,5-triazine, N,Ndimethylformamide, ethanol, 1,4-dioxane, methanol, CH3CN, triethanolamine were received from Aladdin industrial Inc. and used without further purification.

Characterization

The X-ray diffraction (XRD) patterns of the samples were obtained on a Bruker D8 Advance diffractometer with Cu K α radiation (40 kV) at a scanning rate of 5° min⁻¹, ranging from 5˚ to 60˚. Using a field emission scanning electron microscope (FESEM) (Nova Nanosem 200), the system was used to obtain images of the sample at an acceleration voltage of 20 kV. The morphology and microstructure of the materials were observed by transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM) on the JEOL-2100F instrument. Steadystate photoluminescence spectra and transient photoluminescence attenuation curves were obtained on the HORIBA FlouoroMax-4 fluorescence spectrometer. Ultravioletvisible (UV-VIS) diffuse reflectance spectra are obtained on a spectrophotometer (Shimazu UV3600IPLUS). Fourier transform infrared spectroscopy was recorded in the Nicolet6700 infrared spectrometer. X-ray photoelectron spectroscopy (XPS) analysis at AXIS SUPRA, Shimadzu. The binding energy of C 1s (284.8eV) was used to calibrate the binding energy. Nitrogen adsorption-desorption curves characterizing the specific surface area and pore size distribution of BET (Brunauer-Emmett-Teller) were obtained in the Micromeritics ASAP 2010 system, and $CO₂$ adsorption-desorption curves were also obtained.

DFT calculation

All the DFT calculations were conducted based on the Vienna Ab initio Simulation Package (VASP).^[1,2] The exchange-correlation potential was described by the Perdew-Burke-Ernzerhof (PBE) generalized gradient approach (GGA).[3] The electron-ion interactions were accounted by the projector augmented wave (PAW).[4] All DFT calculations were performed with a cut-off energy of 400 eV, and the Brillouin zone was sampled using with the gamma (Γ) K-point. The energy and force convergence criteria of the self-consistent iteration were set to 10^{-4} eV and 0.02 eV Å⁻¹, respectively. DFT-D3 method was used to describe van der Waals (vdW) interactions.[5]

The adsorption energies of $CO₂$ on the different surfaces were calculated according to the below equatiosn:

$$
E_{*_{CO_2}} = E_{\text{tot}} - E_{\text{slab}} - E_{CO_2(g)}
$$

 E_{tot} and E_{slab} are the total energies of surface with and without species adsorption, $E_{CO2}(g)$ are the energy of gas phase.

The Gibbs free energy changes (ΔG) of the reaction are calculated using the following formula:

$$
\Delta G = \Delta E + \Delta ZPE - T\Delta S + \Delta G_{\text{U}} + \Delta G_{\text{pH}}
$$

where ΔE is the difference of electron energies calculated by DFT; ΔZPE and ΔS are the changes of zero-point energy and entropy, respectively, which are obtained from vibrational frequencies. T is the temperature (298.15 K). $\Delta \text{GU} = -e\text{U}$, where U is the applied electrode potential. $\Delta GpH = kBT \times ln 10 \times pH$, where kB is the Boltzmann constant.

References

[1] G. Kresse, J. Hafner, Ab Initio molecular Dynamics for Liquid Metals, *Phys. Rev. B* 47 (**1993**) 558-561.

[2] G. Kresse, J. Hafner, Ab initio molecular-dynamics simulation of the liquidmetalamorphous-semiconductor transition in germanium, Phys. Rev. B Condens. Matter Mater. Phys. 49 (**1994**) 14251–14269.

[3] J. P. Perdew, K. Burke, M. Ernzerhof, Generalized Gradient Approximation Made Simple. *Phys. Rev. Lett.* 77 (**1996**) 3865-3868.

[4] G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmentedwave method, Phys. Rev. B Condens. Matter Mater. Phys. 59 (**1999**) 1758– 1775.

Fig. S1. FT-IR spectra of TAPT and DP.

Fig. S2. Solid-state ¹³C MAS NMR spectra of PT-CTF.

Fig. S3. XRD patterns of PT-CTF, Co-PT-CTF, Ni-PT-CTF, and Zn-PT-CTF.

Fig. S4. N₂ adsorption-desorption isotherms and corresponding pore size distribution plots (inset) of (a) PT-CTF, (b) Co-PT-CTF, (c) Ni-PT-CTF, and (d) Zn-PT-CTF.

Samples	BET surface areas (m^2/g)	Pore volume $\rm(cm^3/g)$
PT-CTF	528.6	0.54
$Co-PT-$ CTF	344.3	0.38
Ni-PT-CTF	398.7	0.41
$Zn-PT-$ CTF	406.4	0.43

Table S1. Summary of BET surface areas and pore volumes of PT-CTF and M-PT-CTF samples.

Fig. S5. TGA curves of PT-CTF, Co-PT-CTF, Ni-PT-CTF and Zn-PT-CTF under a N² atmosphere.

Fig. S6. XPS survey spectra of PT-CTF, Co-PT-CTF, Ni-PT-CTF and Zn-PT-CTF.

Fig. S7. High resolution N 1s spectra of (a) PT-CTF, (b) Co-PT-CTF, (c) Ni-PT-CTF and, (d) Zn-PT-CTF.

Fig. S8. SEM images of (a) PT-CTF, (b) Co-PT-CTF, (c) Ni-PT-CTF, and (d) Zn-PT-CTF.

Fig. S9. TEM image and corresponding EDX elemental mapping images of Co-PT-CTF.

Fig. S10. TEM image and corresponding EDX elemental mapping images of Zn-PT-CTF.

Fig. S11. DOS plots for (a) PT-CTF, (b) Co-PT-CTF, (c)Ni-PT-CTF and (d) Zn-PT-CTF.

Fig. S12. VB-XPS spectra for (a) PT-CTF, (b) Co-PT-CTF, (c) Ni-PT-CTF and (d) Zn-PT-CTF.

Fig. S13. Time course of (a) CO, and (b) H_2 production amounts under the irradiation of visible light over different as-prepared samples.

Fig. S14. ¹H-NMR spectra of the residual liquid obtained from CO₂ photoreduction for Ni-PT-CTF, d⁶-DMSO was used as the internal standard.

Fig. S15. Gas chromatography spectra of photocatalytic reduction products with ¹³CO₂ as a carbon source over Ni-PT-CTF.

Sample	Reaction agent	Light	Yield	Ref.	
		source	(μ mol g ⁻¹ h ⁻¹)		
Re-CTF-py	MeCN/TEOA	Xe lamp	CO: 353.05	$[1]$	
		λ≥400 nm			
$Co/CTF-1$	MeCN/TEOA/H ₂ O	Xe lamp			
	$[Ru(bpy)3Cl2]•6H2O$	$\lambda \geq 420$ nm	CO: 50	$[2]$	
CTF-TDPN	MeCN/TEOA/H ₂ O	Xe lamp			
		$\lambda \geq 420$ nm	CO: 330.3	$[3]$	
Fe SAS/Tr-COF	MeCN/TEOA/H ₂ O	Xe lamp	CO: 980.3	$[4]$	
	$[Ru(bpy)3Cl2]•6H2O$	$\lambda \geq 420$ nm			
20%Ni-CTAB-CTF-1	MeCN/TEOA/H ₂ O	Xe lamp	CO:1254.15	$[5]$	
	[$Ru(bpy)_{3}Cl_{2}$]•6H ₂ O	λ > 420 nm			
$SnS_2/S-CTF$	TEOA/H ₂ O	Xe lamp	CO: 123.6 CH_4 : 43.4	[6]	
		$\lambda \geq 420$ nm			
Pd@Imine-CTF	TEOA/H ₂ O	Xe lamp	CO: 85.3	$[7]$	
		$\lambda \geq 420$ nm	CH_4 : 21.1		
$Cs2AgBiBr6/CTF-1$	EA	Xe lamp	CO: 122.9		
		λ≥420 nm		[8]	
$CsPbBr3/CTF-1$	EA	Xe lamp		$[9]$	
		λ≥400 nm	CO: 173		
CN/CTF	MeCN/TEOA	Xe lamp			
		λ≥420 nm	CO: 151.1	$[10]$	
Ni-PT-CTF	MeCN/TEOA/H ₂ O	Xe lamp	CO: 784.5	This	
		λ≥420 nm		work	

Table S2. Comparison of the activity of Ni-PT-CTF in the photocatalytic CO₂ reduction with the catalysts reported in literature.

Reference

[1] R. Xu, X.-S. Wang, H. Zhao, H. Lin, Y.-B. Huang, R. Cao, Rhenium-modified porous covalent triazine framework for highly efficient photocatalytic carbon dioxide reduction in a solid–gas system, Catal. Sci. Technol. 8 (2018) 2224-2230.

[2] J. Bi, B. Xu, L. Sun, H. Huang, S. Fang, L. Li, L. Wu, A Cobalt-Modified Covalent Triazine-Based Framework as an Efficient Cocatalyst for Visible-Light-Driven Photocatalytic CO₂ Reduction, ChemPlusChem 84 (2019) 1149-1154.

[3] Y. He, X. Chen, C. Huang, L. Li, C. Yang, Y. Yu, Encapsulation of Co single sites in covalent triazine frameworks for photocatalytic production of syngas, Chinese J. Catal. 42 (2021) 123-130.

[4] L. Ran, Z. Li, B. Ran, J. Cao, Y. Zhao, T. Shao, Y. Song, M.K.H. Leung, L. Sun, J. Hou, Engineering Single-Atom Active Sites on Covalent Organic Frameworks for Boosting CO² Photoreduction, J. Am. Chem. Soc. 144 (2022) 17097-17109.

[5] J. Tian, J. Zhang, B. Xu, Q. Chen, G. Huang, J. Bi, An Artificial Photosystem of Metal-Insulator-CTF Nanoarchitectures for Highly Efficient and Selective $CO₂$ Conversion to CO, ChemSusChem 15 (2022) e202201107.

[6] S. Guo, P. Yang, Y. Zhao, X. Yu, Y. Wu, H. Zhang, B. Yu, B. Han, M.W. George, Z. Liu, Direct Z-Scheme Heterojunction of SnS₂/Sulfur-Bridged Covalent Triazine Frameworks for Visible-Light-Driven CO₂ Photoreduction, ChemSusChem 13 (2020) 6278-6283.

[7] S. Guo, Y. Xiao, B. Jiang, Encapsulation of Pd Nanoparticles in Covalent Triazine Frameworks for Enhanced Photocatalytic $CO₂$ Conversion, ACS Sustain. Chem. Eng. 9 (2021) 12646-12654.

[8] Z. Zhang, Y. Jiang, Z. Dong, Y. Chu, J. Xu, 2D/2D Inorganic/Organic Hybrid of Lead-Free $Cs_2AgBiBr_6$ Double Perovskite/Covalent Triazine Frameworks with Boosted Charge Separation and Efficient $CO₂$ Photoreduction, Inorg. Chem. 61 (2022) 16028-16037.

[9] Q. Wang, J. Wang, J.-C. Wang, X. Hu, Y. Bai, X. Zhong, Z. Li, Coupling CsPbBr³ Quantum Dots with Covalent Triazine Frameworks for Visible-Light-Driven $CO₂$ Reduction, ChemSusChem 14 (2021) 1131-1139.

[10] J. He, X. Wang, S. Jin, Z.-Q. Liu, M. Zhu, 2D metal-free heterostructure of covalent triazine framework/g-C₃N₄ for enhanced photocatalytic CO_2 reduction with high selectivity, Chinese J. Catal. 43 (2022) 1306-1315.

Fig. S16. XRD patterns of Ni-PT-CTF before and after the cycling tests.

Fig. S17. FT-IR spectra of Ni-PT-CTF before and after recycling experiment.

Fig. S18. XPS spectra of Ni-PT-CTF before and after the cycling tests. Full spectra (a), high-resolution (b) C 1s, (c) N 1s and (d) Ni 2p.

Fig. S19. TEM images of Ni-PT-CTF (a) before and (b) after recycling experiment.

Fig. S20. DFT-derived CO² binding structures for (a) PT-CTF, (b) Co-PT-CTF, (c) Ni-PT-CTF and, (d) Zn-PT-CTF.

τ_1	$Rel.$ %	τ_2	Rel.%	τ	
0.40	69.48	5.01	30.52	4.30	
1.68	34.88	8.98	65.12	8.31	
1.82	31.29	9.85	68.71	9.23	
0.75	39.72	7.35	60.28	6.93	
				CTF, NI-PT-CTF and ZII-PT-CTF, respectively.	

Table S3. Fitted parameters from time-resolved PL spectra of pristine PT-CTF, Co-PT-CTF, Ni-PT-CTF and Zn-PT-CTF-respectively.

Fig. S21. Differential charge density of (a) PT-CTF, (b) Co-PT-CTF, (c)Ni-PT-CTF and (d) Zn-PT-CTF, where the isosurface value is 0.002 e \AA ⁻³, and yellow and cyan regions denote charge accumulation and depletion, respectively.

Reduction pathway

Ni-PT-CTF +
$$
hv \rightarrow h^+ + e^-
$$

\n $H_2O \rightarrow H^+ + OH^-$
\n $* + CO_2 \rightarrow *CO_2$
\n $*CO_2 + H^+ + e^- \rightarrow *COOH$
\n $*COOH + H^+ + e^- \rightarrow *CO + H_2O$
\n $*CO \rightarrow CO + *$

where $*$ stands catalytically active site during the photocatalytic CO_2 reduction process. **Fig. S22**. The possible photoreaction pathways over the Ni-PT-CTF.