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Materials 

2,9-diformyl-1,10-phenanthroline, 2,4,6-tris (4-aminophenyl)-1,3,5-triazine, N,N-

dimethylformamide, ethanol, 1,4-dioxane, methanol, CH3CN, triethanolamine were 

received from Aladdin industrial Inc. and used without further purification.

Characterization

The X-ray diffraction (XRD) patterns of the samples were obtained on a Bruker 

D8 Advance diffractometer with Cu Kα radiation (40 kV) at a scanning rate of 5˚ min−1, 

ranging from 5˚ to 60˚. Using a field emission scanning electron microscope (FESEM) 

(Nova Nanosem 200), the system was used to obtain images of the sample at an 

acceleration voltage of 20 kV. The morphology and microstructure of the materials 

were observed by transmission electron microscopy (TEM) and high-resolution 

transmission electron microscopy (HRTEM) on the JEOL-2100F instrument. Steady-

state photoluminescence spectra and transient photoluminescence attenuation curves 

were obtained on the HORIBA FlouoroMax-4 fluorescence spectrometer. Ultraviolet-

visible (UV-VIS) diffuse reflectance spectra are obtained on a spectrophotometer 

(Shimazu UV3600IPLUS). Fourier transform infrared spectroscopy was recorded in the 

Nicolet6700 infrared spectrometer. X-ray photoelectron spectroscopy (XPS) analysis 

at AXIS SUPRA, Shimadzu. The binding energy of C 1s (284.8eV) was used to 

calibrate the binding energy. Nitrogen adsorption-desorption curves characterizing the 

specific surface area and pore size distribution of BET (Brunauer-Emmett-Teller) were 

obtained in the Micromeritics ASAP 2010 system, and CO2 adsorption-desorption 

curves were also obtained.

DFT calculation

All the DFT calculations were conducted based on the Vienna Ab initio Simulation 

Package (VASP).[1,2] The exchange-correlation potential was described by the Perdew-

Burke-Ernzerhof (PBE) generalized gradient approach (GGA).[3] The electron-ion 

interactions were accounted by the projector augmented wave (PAW).[4] All DFT 

calculations were performed with a cut-off energy of 400 eV, and the Brillouin zone 
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was sampled using with the gamma (Γ) K-point. The energy and force convergence 

criteria of the self-consistent iteration were set to 10-4 eV and 0.02 eV Å-1, respectively. 

DFT-D3 method was used to describe van der Waals (vdW) interactions.[5]

The adsorption energies of CO2 on the different surfaces were calculated according 

to the below equatiosn:

2 2* tot ( )CO slab CO gE E E E  

Etot and Eslab are the total energies of surface with and without species adsorption, ECO2(g) 

are the energy of gas phase.

The Gibbs free energy changes (ΔG) of the reaction are calculated using the 

following formula: 

U pH+ ZPE        G = E T S G G

where ΔE is the difference of electron energies calculated by DFT; ΔZPE and ΔS are 

the changes of zero-point energy and entropy, respectively, which are obtained from 

vibrational frequencies. T is the temperature (298.15 K). ΔGU = −eU, where U is the 

applied electrode potential. ΔGpH = kBT × ln 10 × pH, where kB is the Boltzmann 

constant.
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Fig. S1. FT-IR spectra of TAPT and DP. 

Fig. S2. Solid-state 13C MAS NMR spectra of PT-CTF.
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Fig. S3. XRD patterns of PT-CTF, Co-PT-CTF, Ni-PT-CTF, and Zn-PT-CTF.
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Fig. S4. N2 adsorption-desorption isotherms and corresponding pore size distribution 

plots (inset) of (a) PT-CTF, (b) Co-PT-CTF, (c) Ni-PT-CTF, and (d) Zn-PT-CTF.

Table S1. Summary of BET surface areas and pore volumes of PT-CTF and M-PT-
CTF samples.

Samples
BET surface 

areas 
(m2/g)

Pore volume 
(cm3/g)

PT-CTF 528.6 0.54

Co-PT-
CTF 344.3 0.38

Ni-PT-CTF 398.7 0.41

Zn-PT-
CTF 406.4 0.43
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Fig. S5. TGA curves of PT-CTF, Co-PT-CTF, Ni-PT-CTF and Zn-PT-CTF under a N2 

atmosphere. 

Fig. S6. XPS survey spectra of PT-CTF, Co-PT-CTF, Ni-PT-CTF and Zn-PT-CTF.
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Fig. S7. High resolution N 1s spectra of (a) PT-CTF, (b) Co-PT-CTF, (c) Ni-PT-CTF 

and, (d) Zn-PT-CTF.
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Fig. S8. SEM images of (a) PT-CTF, (b) Co-PT-CTF, (c) Ni-PT-CTF, and (d) Zn-PT-

CTF.
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Fig. S9. TEM image and corresponding EDX elemental mapping images of Co-PT-

CTF.

Fig. S10. TEM image and corresponding EDX elemental mapping images of Zn-PT-
CTF.
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Fig. S11. DOS plots for (a) PT-CTF, (b) Co-PT-CTF, (c)Ni-PT-CTF and (d) Zn-PT-

CTF.
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Fig. S12. VB-XPS spectra for (a) PT-CTF, (b) Co-PT-CTF, (c) Ni-PT-CTF and (d) Zn-

PT-CTF.
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Fig. S13. Time course of (a) CO, and (b) H2 production amounts under the irradiation 

of visible light over different as-prepared samples.

Fig. S14. 1H-NMR spectra of the residual liquid obtained from CO2 photoreduction for 

Ni-PT-CTF, d6-DMSO was used as the internal standard.
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Fig. S15. Gas chromatography spectra of photocatalytic reduction products with 13CO2 

as a carbon source over Ni-PT-CTF.
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Table S2. Comparison of the activity of Ni-PT-CTF in the photocatalytic CO2 reduction 

with the catalysts reported in literature.

Sample Reaction agent
Light 
source

Yield
(μmol g-1 h-1)

Ref.

Re-CTF-py MeCN/TEOA
Xe lamp

λ≥400 nm
CO: 353.05 [1]

Co/CTF-1
MeCN/TEOA/H2O

[Ru(bpy)3Cl2]•6H2O

Xe lamp

λ≥420 nm
CO: 50 [2]

CTF-TDPN MeCN/TEOA/H2O
Xe lamp

λ≥420 nm
CO: 330.3 [3]

Fe SAS/Tr-COF
MeCN/TEOA/H2O

[Ru(bpy)3Cl2]•6H2O

Xe lamp

λ≥420 nm
CO: 980.3 [4]

20%Ni-CTAB-CTF-1
MeCN/TEOA/H2O

[Ru(bpy)3Cl2]•6H2O

Xe lamp

λ＞420 nm
CO:1254.15 [5]

SnS2/S-CTF TEOA/H2O
Xe lamp

λ≥420 nm

CO: 123.6

CH4: 43.4
[6]

Pd@Imine-CTF TEOA/H2O
Xe lamp

λ≥420 nm

CO: 85.3

CH4: 21.1
[7]

Cs2AgBiBr6/CTF-1 EA
Xe lamp

λ≥420 nm
CO: 122.9 [8]

CsPbBr3/CTF-1 EA
Xe lamp

λ≥400 nm
CO: 173 [9]

CN/CTF MeCN/TEOA
Xe lamp

λ≥420 nm
CO: 151.1 [10]

Ni-PT-CTF MeCN/TEOA/H2O
Xe lamp

λ≥420 nm
CO: 784.5

This 
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Fig. S16. XRD patterns of Ni-PT-CTF before and after the cycling tests.

Fig. S17. FT-IR spectra of Ni-PT-CTF before and after recycling experiment. 
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Fig. S18. XPS spectra of Ni-PT-CTF before and after the cycling tests. Full spectra (a), 

high-resolution (b) C 1s, (c) N 1s and (d) Ni 2p.
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Fig. S19. TEM images of Ni-PT-CTF (a) before and (b) after recycling experiment.

Fig. S20. DFT-derived CO2 binding structures for (a) PT-CTF, (b) Co-PT-CTF, 

(c) Ni-PT-CTF and, (d) Zn-PT-CTF.
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Table S3. Fitted parameters from time-resolved PL spectra of pristine PT-CTF, Co-PT-

CTF, Ni-PT-CTF and Zn-PT-CTF, respectively.

Photocatalysts τ1 Rel.% τ2 Rel.% τ

PT-CTF 0.40 69.48 5.01 30.52 4.30

Co-PT-CTF 1.68 34.88 8.98 65.12 8.31

Ni-PT-CTF 1.82 31.29 9.85 68.71 9.23

Zn-PT-CTF 0.75 39.72 7.35 60.28 6.93

Fig. S21. Differential charge density of (a) PT-CTF, (b) Co-PT-CTF, (c)Ni-PT-CTF 

and (d) Zn-PT-CTF, where the isosurface value is 0.002 e Å-3, and yellow and cyan 

regions denote charge accumulation and depletion, respectively.
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where * stands catalytically active site during the photocatalytic CO2 reduction process.

Fig. S22. The possible photoreaction pathways over the Ni-PT-CTF.


