Supporting information Information (SI) for Journal of Materials Chemistry A.

The Royal Society of Chemistry 2024

Supporting information

Flexible vs. Rigid Covalent Organic Frameworks: Catalytic Performance

in the Knoevenagel Reaction

_{Zero} Supplementary Information (SI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2024

al of Materials Chemistry A.

upporting information

ent Organic Frameworks: Catalytic Performance

in the Knoevenagel Reaction

hi,^a Xiaoqian Tao,^a Benhai Liu,^a Haishen Yang^b and Ya Du^{*a}

a School of Shoristy an

Ition (SI) for Journal of Materials Chemistry A.

Supporting information

Supporting information

Persong Jing,^a Xiaokun Shi,^a Xiaoqian Tao,^a Benhai Liu,^a Haishen Yang^b and Ya Du^{+a}

of Advanced Synthesis, Schoo tic Performance
and Ya Du*a
neering, Nanjing Tech a Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech The Royal Society of Chemistry 2024

Supporting information

Ilexible vs. Rigid Covalent Organic Frameworks: Catalytic Performance

in the Knoevenagel Reaction

Zerong Jing,^y Xiaokun Shi,^y Xiaoqian Tao,⁸ Benhai Liu,

Supporting information

Flexible vs. Rigid Covalent Organic Frameworks: Catalytic Performance

in the Knoevenagel Reaction

Zerong Jing,[,] Xiaokun Shi,³, Xiaoqian Tao,³ Benhai Liu,² Haishen Yang³ and Ya Du⁴²

² ^b Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College **Supporting information

Exible vs. Rigid Covalent Organic Frameworks: Catalytic Performance

in the Knoevenagel Reaction

Zerong Jing,² Xiaokun Shi,² Xiaoqian Tao,² Benhai Liu,² Haishen Yang^b and Ya Du²²

Shan Flexible vs. Rigid Covalent Organic Frameworks: Catalytic Performance**
 in the Knoevenagel Reaction

Zerong Jing,³ Xiaokun Shi,³ Xiaoqian Tao,³ Benhai Liu,³ Haishen Yang^a and Ya Du⁺²

⁸ Institute of Advanc China in the Knoevenagel Reaction
Zerong Jing,* Xiaokun Shi,* Xiaoqian Tao,* Benhai Liu,* Haishen Yang^a and Ya Du**
^a Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech
University, N Xiaoqian Tao,^a Benhai Liu,^a Haishen Yang^b and Ya Du*^a

Chool of Chemistry and Molecular Engineering, Nanjing Tech

R. China

Als Protection and Advanced Materials in Electric Power, College

eering, Shanghai Univer

I. Characterization Methods
Chemicals were obtained from Energy Chemical or Aladdin, and used without
further purification unless otherwise noted. The solvents were dried and distilled Exploration **Chemicals were obtained from Energy Chemical or Aladdin, and used without**
The purification unless otherwise noted. The solvents were dried and distilled
The property and procedures.
The spectra was recorded i **I. Characterization Methods**

Chemicals were obtained from Energy Chemical or Aladdin, and used without

further purification unless otherwise noted. The solvents were dried and distilled

according to conventional proced **I. Characterization Methods**

Chemicals were obtained from Energy Chemical or Aladdin, and used without

further purification unless otherwise noted. The solvents were dried and distilled

according to conventional proced

aracterization Methods

Chemicals were obtained from Energy Chemical or Aladdin, and used without

er purification unless otherwise noted. The solvents were dried and distilled

ding to conventional procedures.

¹H spe **I. Characterization Methods**
Chemicals were obtained from Energy Chemical or Aladdin, and used without
further purification unless otherwise noted. The solvents were dried and distilled
according to conventional procedure **I. Characterization Methods**

Chemicals were obtained from Energy Chemical or Aladdin, and used without

further purification unless otherwise noted. The solvents were dried and distilled

according to conventional proced **I. Characterization Methods**

Chemicals were obtained from Energy Chemical or Aladdin, and used without

further purification unless otherwise noted. The solvents were dried and distilled

according to conventional proced **I. Characterization Methods**

Chemicals were obtained from Energy Chemical or Aladdin, and used without

further purification unless otherwise noted. The solvents were dried and distilled

according to conventional proced **I. Characterization Methods**

Chemicals were obtained from Energy Chemical or Aladdin, and used without

further purification unless otherwise noted. The solvents were dried and distilled

according to conventional proce Chemicals were obtained from Energy Chemical or Aladdin, and used without

further purification unless otherwise noted. The solvents were dried and distilled

according to conventional procedures.

¹H spectra was record Chemicals were obtained from Energy Chemical or Aladdin, and used without
further purification unless otherwise noted. The solvents were dried and distilled
according to conventional procedures.
¹H spectra was recorded further purification unless otherwise noted. The solvents were dried and distilled
according to conventional procedures.

¹H spectra was recorded in CDCl₃ or DMSO-d₆ on Bruker Advance or Joel 400

MHz spectrometers. according to conventional procedures.

¹H spectra was recorded in CDCl₃ or DMSO-d₆ on Bruker Advance or Joel 400

MHz spectrometers. Fourier transform infrared (FT-IR) spectra were obtained with

KBr plates by using ²H spectra was recorded in CDCl₃ or DMSO-d₆ on Bruker Advance or Joel 400
MHz spectrometers. Fourier transform infrared (FT-IR) spectra were obtained with
KBr plates by using a IS10 FT-IR Spectrometer (Themo Fisher C MHz spectrometers. Fourier transform infrared (FT-IR) spectra were obtained with
KBr plates by using a IS10 FT-IR Spectrometer (Themo Fisher Corporation). Powder
X-ray diffraction (PXRD) patterns were recorded on a Smart KBr plates by using a IS10 FT-IR Spectrometer (Themo Fisher Corporation). Powder
X-ray diffraction (PXRD) patterns were recorded on a Smart Lab 3Kw (Rigaku
Corporation). Nitrogen gas adsorption experiments were performed o X-ray diffraction (PXRD) patterns were recorded on a Smart Lab 3Kw (Rigaku
Corporation). Nitrogen gas adsorption experiments were performed on a Quanta
chrome Autosorb-iQ3 automatic volumetric instrument. The samples were chrome Autosorb-iQ3 automatic volumetric instrument. The samples were sputte
with Au (nano-sized film) prior to imaging. Thermogravimetric analyses (TGA) w
carried out on a STA449 analyzer (Netzsch Corporation) under N₂ rate of 10 °C min⁻¹ within a temperature range of 30-800 °C. Solid-state ¹³C
NMR spectra were recorded on a Bruker Advancelll-400 MHz spectrometer.
icle size distribution was measured by the Laser Particle Size Analyze CP/MAS NMR spectra were recorded on a Bruker AdvanceIII-400 MHz spectrometer.
The particle size distribution was measured by the Laser Particle Size Analyzer Omini.
Transmission electron microscope (TEM) samples were exam The particle size distribution was measured by the Laser Particle Size Analyze

Transmission electron microscope (TEM) samples were examined by

JEM-ARM200F and JEOL 1400Plus operating at 200 kV. The reaction autoclain

t

2,7-diamino-10-methylphenoxazine(DAPO),¹ tri(4-formylphenoxy)-cyanurate $(TFPC)^2$ and 1,3,5-triazine(4-aldehyde benzene)triazine $(TFPT)^3$ were synthesized

2

 $\begin{array}{c}\n\begin{array}{ccc}\n\bullet \\
\bullet \\
\bullet\n\end{array}\n\end{array}$

and the university of the ultrasonic machine for 15 minutes to blend well the catalyst AcOH (0.3 mL, 6 mol/L), froze the mixture in liquid nitrogen, removed
the catalyst AcOH (0.3 mL, 6 mol/L), froze the mixture in liquid nitrogen, removed
dated, placed in the ultrasonic machine for 15 minutes 10-methyl-phenoxazine-2,7-diamine (DAPO, 34.1 mg, 0.15 mmol) and

10-methyl-phenoxazine-2,7-diamine (DAPO, 34.1 mg, 0.15 mmol) and

tri(4-formylphenoxy)cyanurate (TFPC, 44.1 mg, 0.1 mmol) were mixed in a Schlenk

tube fil 10-methyl-phenoxazine-2,7-diamine (DAPO, 34.1 mg, 0.15 mmol) and
tri(4-formylphenoxy)cyanurate (TFPC, 44.1 mg, 0.1 mmol) were mixed in a Schlenk
tube filled with nitrogen. Subsequently, o-DCB (1 mL) and n-Butanol (1 mL) w 10-methyl-phenoxazine-2,7-diamine (DAPO, 34.1 mg, 0.15 mmol) and
tri(4-formylphenoxy)cyanurate (TFPC, 44.1 mg, 0.1 mmol) were mixed in a Schlenk
tube filled with nitrogen. Subsequently, o-DCB (1 mL) and n-Butanol (1 mL) w 10-methyl-phenoxazine-2,7-diamine (DAPO, 34.1 mg, 0.15 mmol) and
tri(4-formylphenoxy)cyanurate (TFPC, 44.1 mg, 0.1 mmol) were mixed in a Schlenk
tube filled with nitrogen. Subsequently, o-DCB (1 mL) and n-Butanol (1 mL) w 10-methyl-phenoxazine-2,7-diamine (DAPO, 34.1 mg, 0.15 mmol) and
tri(4-formylphenoxy)cyanurate (TFPC, 44.1 mg, 0.1 mmol) were mixed in a Schlenk
tube filled with nitrogen. Subsequently, o-DCB (1 mL) and n-Butanol (1 mL) we

Froze the mixture in liquid nitrogen, removed vacuum and the reaction system was
degeneed and heated at 120 °C for 3 days. Take the mixture force and seat the tube with
a financhrower and out it in oven for 3 days, a Take 2.7-diamino-10-methylphenoxazine (DAPO, 30.6 mg, 0.135 mmol) and
3.5-triazine (4-aldehyde benzene) triazine (TFPT, 35.4 mg, 0.09 mmol) and
4.3,5-triazine (4-aldehyde benzene) triazine (TFPT, 35.4 mg, 0.09 mmol) were
disso sealed and heated at 120 °C for 3 days. Take the mixture froze and seal the tube with a flamethrower, and put it in over in 3 days. The reaction system was degassed through three freezing-vacuum-melting cycles. The reacti 2,7-diamino-10-methylphenoxazine (DAPO, 30.6 mg, 0.135 mmol) and
1,3,5-triazine (4-aldehyde benzene) triazine (TFPT, 35.4 mg, 0.09 mmol) were
dissolved in 3 mL of acetonitrile in Schleck tube. Ultrasonic treatment for 15 2,7-diamino-10-methylphenoxazine (DAPO, 30.6 mg, 0.135 mmol) and
1,3,5-triazine (4-aldehyde benzene) triazine (TFPT, 35.4 mg, 0.09 mmol) were
dissolved in 3 mL of acetonitrile in Schleck tube. Ultrasonic treatment for 15 2,7-diamino-10-methylphenoxazine (DAPO, 30.6 mg, 0.135 mmol) and
1,3,5-triazine (4-aldehyde benzene) triazine (TFPT, 35.4 mg, 0.09 mmol) were
dissolved in 3 mL of acetonitrile in Schleck tube. Ultrasonic treatment for 15

Condensation^{a}.

2 Theta(degree)
 Eigure S8. Chemical stability tests of the DAPO-TFPC-COF (a) and DAPO-TFPT-COF (b).

The DAPO-TFPC-COF and DAPO-TFPT-COF samples were each exposed to identical

conditions for 24 h.
 VIII. The Catalyti Figure S8. Chemical stability tests of the DAPO-TFPC-COF (a) and DAPO-TFPT-COF (b).

The DAPO-TFPC-COF and DAPO-TFPT-COF samples were each exposed to identical

conditions for 24 h.
 VIII. The Catalytic Activity of the spectroscopy. $\frac{b}{c}$ The mass of each monomer catalyst was determined based on the -COF and DAPO-TFPT-COF samples were each exposed to identical

4 h.
 lytic Activity of the Monomer

catalytic activities of the three monomers for the Knoevenagel
 $\frac{Catalyst}{TFC}$ $\frac{3.6}{5.6}$ ≤ 1

TFPT $\frac{3.4}{TFT}$ conditions for 24 h.
 VIII. The Catalytic Activity of the Monomer
 Table S1 The catalytic activities of the three monomers for the Knoevenagel

Condensation".
 $\begin{array}{r} \begin{array}{r} \hline \text{Catalyst} & \text{Am.(mg)^6} & \text{Yield}\% \\ \hline \text{TFPC} & 3.$

- **XIV. References**
1. Z. Meng, Y. Zhang, M. Dong, Y. Zhang, F. Cui, T.-P. Loh, Y. Jin, W. Zhan
Du, *J. Mater. Chem. A, 2021, 9* (17), 10661-10665.
2. P. Das, S. K. Mandal, *ACS Appl. Mater. Interfaces,* 2021, **13** (12), 141
-
- **XIV. References**
1. Z. Meng, Y. Zhang, M. Dong, Y. Zhang, F. Cui, T.-P. Loh, Y. Jin, W. Zhang, H. Yang, Y.
Du, *J. Mater. Chem. A*, 2021, **9** (17), 10661-10665.
2. P. Das, S. K. Mandal, *ACS Appl. Mater. Interfaces,* 2021 **7. References**

Z. Meng, Y. Zhang, M. Dong, Y. Zhang, F. Cui, T.-P. Loh, Y. Jin, W. Zhang, H. Yang, Y.

Du, *J. Mater. Chem. A*, 2021, **9** (17), 10661-10665.

P. Das, S. K. Mandal, *ACS Appl. Mater. Interfaces*, 2021, **13 2. P. Das, S. K. Mang, M. Dong, Y. Zhang, F. Cui, T.-P. Loh, Y. Jin, W. Zhang, H. Yang, Y.**

Du, *J. Mater. Chem. A*, 2021, 9 (17), 10661-10665.

2. P. Das, S. K. Mandal, *ACS Appl. Mater. Interfaces,* 2021, 13 (12), 1416 **XIV. References**

1. Z. Meng, Y. Zhang, M. Dong, Y. Zhang, F. Cui, T.-P. Loh, Y. Jin, W. Zhang, H. Yang, Y.

Du, *J. Mater. Chem. A*, 2021, **9** (17), 10661-10665.

2. P. Das, S. K. Mandal, *ACS Appl. Mater. Interfaces*, 2 2022-2030. XIV. References

1. Z. Meng, Y. Zhang, M. Dong, Y. Zhang, F. Cui, T.-P. Loh, Y. Jin, W. Zhang, H. Yang, Y.

Du, J. Mater. Chem. A, 2021, 9 (17), 10661-10665.

2. P. Das, S. K. Mandal, ACS Appl. Mater. Interfaces, 2021, 13
- 21304-21310.