Supplementary Information (SI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2024

Supporting information

Flexible vs. Rigid Covalent Organic Frameworks: Catalytic Performance

in the Knoevenagel Reaction

Zerong Jing, a Xiaokun Shi, a Xiaoqian Tao, a Benhai Liu, a Haishen Yang and Ya Du*a

^a Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816 Jiangsu, P. R. China

^b Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090, China

*E-mail: ias_ydu@njtech.edu.cn (Y. D.)

Table of Contents

I. Characterization Methods	2
II. Synthetic Precursors	2
III. Synthetic COFs	3
IV. Structural Refinements	5
V. BET Plot for N ₂ Isotherm	8
VI. Solid-State ¹³ C CP-MAS NMR Spectra	8
VII. Chemical Stability Tests	9
VIII. The Catalytic Activity of the Monomer	9
IX. Mechanism of Knoevenagel Condensation Reaction	10
X. SEM Image after Five Cycles	11
XI. Study on the Cycling Stability of Catalysts	12
XII. FT-IR Comparison Chart before and after Five Cycles	13
XIII. NMR Spectra	14
XIV. References	23

I. Characterization Methods

Chemicals were obtained from Energy Chemical or Aladdin, and used without further purification unless otherwise noted. The solvents were dried and distilled according to conventional procedures.

¹H spectra was recorded in CDCl₃ or DMSO-d₆ on Bruker Advance or Joel 400 MHz spectrometers. Fourier transform infrared (FT-IR) spectra were obtained with KBr plates by using a IS10 FT-IR Spectrometer (Themo Fisher Corporation). Powder X-ray diffraction (PXRD) patterns were recorded on a Smart Lab 3Kw (Rigaku Corporation). Nitrogen gas adsorption experiments were performed on a Quanta chrome Autosorb-iQ3 automatic volumetric instrument. The samples were sputtered with Au (nano-sized film) prior to imaging. Thermogravimetric analyses (TGA) were carried out on a STA449 analyzer (Netzsch Corporation) under N₂ atmosphere at a heating rate of 10 °C min⁻¹ within a temperature range of 30-800 °C. Solid-state ¹³C CP/MAS NMR spectra were recorded on a Bruker AdvanceIII-400 MHz spectrometer. The particle size distribution was measured by the Laser Particle Size Analyzer Omini. Transmission electron microscope (TEM) samples were examined by using a JEM-ARM200F and JEOL 1400Plus operating at 200 kV. The reaction autoclave used in the experiment was purchased from Beijing Laibei Scientific Instrument Co., Ltd.

II. Synthetic Precursors

2,7-diamino-10-methylphenoxazine(DAPO),¹ tri(4-formylphenoxy)-cyanurate (TFPC)² and 1,3,5-triazine(4-aldehyde benzene)triazine (TFPT)³ were synthesized according to the reported procedures. Their ¹H NMR spectra match well with those reported previously.

2

III. Synthetic COFs

Synthesis of DAPO-TFPC-COF.

10-methyl-phenoxazine-2,7-diamine (DAPO, 34.1 mg, 0.15 mmol) and tri(4-formylphenoxy)cyanurate (TFPC, 44.1 mg, 0.1 mmol) were mixed in a Schlenk tube filled with nitrogen. Subsequently, o-DCB (1 mL) and n-Butanol (1 mL) were added, placed in the ultrasonic machine for 15 minutes to blend well; After it, added the catalyst AcOH (0.3 mL , 6 mol/L), froze the mixture in liquid nitrogen, removed vacuum the reaction degassed through and system was three freezing-vacuum-melting cycles. Take the mixture froze and seal the tube with a flamethrower, and put it in oven for 3 days at 120 °C. The solid was filtered then washed with DMF, THF, and acetone. The solid was vacuum-dried at 80 °C for 12 h to afford yellow crystalline powder (69.2 mg, 87%).

Synthesis of DAPO-TFPT-COF.

2,7-diamino-10-methylphenoxazine (DAPO, 30.6 mg, 0.135 mmol) and 1,3,5-triazine (4-aldehyde benzene) triazine (TFPT, 35.4 mg, 0.09 mmol) were dissolved in 3 mL of acetonitrile in Schleck tube. Ultrasonic treatment for 15 minutes promoted dispersive dissolution. After it, added the catalyst AcOH (0.9 mL, 3 mol/L), froze the mixture in liquid nitrogen, removed vacuum and the reaction system was degassed through three freezing-vacuum-melting cycles. The reaction mixture is sealed and heated at 120 °C for 3 days. Take the mixture froze and seal the tube with a flamethrower, and put it in oven for 3 days at 120 °C. The solid was filtered then washed with DMF, THF, and acetone. The solid was vacuum-dried at 80 °C for 12 h to afford red crystalline powder (56 mg, 89%).

IV. Structural Refinements

Figure S1. DAPO-TFPC-COF and DAPO-TFPT-COF experimental powder PXRD and Pawley refinement (upper), Rietveld refinement (lower).

Figure S2. The computationally determined structures of DAPO-TFPC-COF. (a) Top and (b) side view of the theoretical structure of DAPO-TFPC-COF with eclipsed (AA) stacking arrangement.

Figure S3. The computationally determined structures of DAPO-TFPC-COF. (a) Top and (b) side view of the theoretical structure of DAPO-TFPC-COF with eclipsed (AB) stacking arrangement.

Figure S4. The computationally determined structures of DAPO-TFPT-COF. (a) Top and (b) side view of the theoretical structure of DAPO-TFPT-COF with eclipsed (AA) stacking arrangement.

Figure S5. The computationally determined structures of DAPO-TFPT-COF. (a) Top and (b) side view of the theoretical structure of DAPO-TFPT-COF with eclipsed (AB) stacking arrangement.

V. BET Plot for N₂ Isotherm

Figure S6 BET plot for (a)DAPO-TFPC-COF; (b)DAPO-TFPT-COF.

VI. Solid-State ¹³C CP-MAS NMR Spectra

Figure S7. Solid-state ¹³C CP-MAS NMR spectra of DAPO-TFPC-COF.⁴

VII. Chemical Stability Tests

Figure S8. Chemical stability tests of the DAPO-TFPC-COF (a) and DAPO-TFPT-COF (b). The DAPO-TFPC-COF and DAPO-TFPT-COF samples were each exposed to identical conditions for 24 h.

VIII. The Catalytic Activity of the Monomer

Table S1 The catalytic activities of the three monomers for the Knoevenagel Condensation^{*a*}.

Catalyst	Am.(mg) ^b	Yield%
TFPC	3.6	<1
TFPT	3.4	<1
DAPO	1.9	81

^{*a*} Reaction conditions: Catalyst, benzaldehyde (0.50 mmol), malononitrile (0.60 mmol), Yield (%) was determined using the normalization method with ¹H NMR spectroscopy. ^{*b*} The mass of each monomer catalyst was determined based on the proportion of each monomer in the corresponding 5.5 mg COF.

IX. Mechanism of Knoevenagel Condensation Reaction

Figure S9. Mechanism of the catalytic Knoevenagel condensation reaction.

X. SEM Image after Five Cycles

Figure S10. SEM image after five cycles of DAPO-TFPC-COF (a) (c) and DAPO-TFPT-COF (b) (d).

XI. Study on the Cycling Stability of Catalysts

Figure S11. (a) PXRD of DAPO-TFPC-COF cycling five times; (b) PXRD of DAPO-TFPT-COF cycling five times.

XII. FT-IR Comparison Chart before and after Five Cycles

Figure S12. The FT-IR comparison chart before and after 5 cycles of DAPO-TFPC-COF (a) and DAPO-TFPT-COF (b).

XIV. References

- 1. Z. Meng, Y. Zhang, M. Dong, Y. Zhang, F. Cui, T.-P. Loh, Y. Jin, W. Zhang, H. Yang, Y. Du, *J. Mater. Chem. A*, 2021, **9** (17), 10661-10665.
- 2. P. Das, S. K. Mandal, ACS Appl. Mater. Interfaces, 2021, 13 (12), 14160-14168.
- 3. J. Yang, X. Zhang, W. Si, Y. Cao, J. Qian, Y. Li, B. Li, W. Qin, *ACS Catal.*, 2024, **14** (3), 2022-2030.
- 4. L. Liu, C. Yin, Y. Li, H. Yang, Y. Du, Y. Wang, *Ind. Eng. Chem. Res.*, 2023, **62** (49), 21304-21310.