Supplementary Information for p-d Orbital Coupling in Silicon-Based Dual-Atom Catalysts for Enhanced CO₂ Reduction: Insight into Electron Regulation of Active Center and Coordination Atoms

Meijie Wang,[†] Yaowei Xiang,[†] Yuxing Lin,[†] Yang Sun,[†] Zi-zhong Zhu,[†] Shunqing Wu,[†] and Xinrui Cao^{*,†,‡}

†Department of Physics, Xiamen University, Xiamen 361005, China ‡Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen University, Xiamen 361005, China

E-mail: xinruicao@xmu.edu.cn

Computational Details

The number of p_z electrons (N_{p_z}) is estimated by the following equation:

$$N_{p_z} = \int_{-\infty}^0 D(E) \mathrm{d}E \tag{1}$$

Considering that the transition metal d orbital is localized, whereas the Si p orbital is delocalized, we have set different intervals. The d band center (ε_d) is estimated by the following equation:

$$\varepsilon_d = \frac{\int_{-6.4}^{+5.4} E \cdot D(E) dE}{\int_{-6.4}^{+5.4} D(E) dE}$$
(2)

The p_z band center (ε_{p_z}) is estimated by the following equation:

$$\varepsilon_{p_z} = \frac{\int_{-\infty}^{+\infty} E \cdot D(E) dE}{\int_{-\infty}^{+\infty} D(E) dE}$$
(3)

Different structures have different energy intervals, so we normalize ε_{p_z} to obtain ε'_{p_z} :

$$\varepsilon'_{p_z} = \frac{1}{\int_{-\infty}^{+\infty} E dE} \cdot \varepsilon_{p_z} = \frac{\int_{-\infty}^{+\infty} E \cdot D(E) dE}{\int_{-\infty}^{+\infty} D(E) dE \cdot E dE}$$
(4)

where D(E) is the density of state (DOS) of the band at a given energy E. The Fermi level (E_F) is calibrated to $E_F = 0$.

Machine Learning

First, the subset consisting of 85 SiTMN₅An structures with 24 different transition metals across 12 coordination environments was employed to train for predicting ΔG_{*CO_2} and ΔG_{*OH} . The distribution of ΔG_{*CO_2} and ΔG_{*OH} of SiTMN₅An DACs in the DFT calculated database of this work is plotted in Figure S1(a)(b), respectively. The ΔG_{*CO_2} ranges from -1.94 to 0.24 eV, while ΔG_{*OH} ranges from -2.00 to -0.65 eV. The ΔG_{*CO_2} and ΔG_{*OH} values are distributed in a wide range, which is beneficial for the machine learning model to learn the relationship between the structure and adsorption free energy.

Figure S1: Histogram of (a) ΔG_{*CO_2} and (b) ΔG_{*OH} in the DFT calculated database of SiTMN₅An DACs, respectively.

Our primary target was the adsorption free energy (ΔG) on SiTMN₅An DACs. To predict ΔG , we incorporated 22 input features relating to the structure and various atomic properties that may influence adsorption free energy. These features included 14 attributes pertaining to transition metals and 8 derived from one-hot encoding of coordination environments, as detailed in Table S1.

Features	Description	Features	Description
N	Atomic number	C	Atomic cycle
G	Atomic group	M	Atomic weight
R	Atomic radii	α	Polarizability
E_A	Electron affinity	χ	Electronegativity
E_l	Lonization energy	N_l	Number of lone pair electrons
N_s	Number of s electrons	N_p	Number of p electrons
N_d	Number of d electrons	N_V	Number of valence electrons
D_B	Doping with B atom	D_C	Doping with C atom
P_1	Doping of position 1	P_2	Doping of position 2
P_3	Doping of position 3	P_4	Doping of position 4
P_5	Doping of position 4	P_6	Doping of position 6

Table S1: 22 Initial Features with their Description

To refine our feature set, we first analyzed the Pearson correlation coefficients among

the 14 non-coordination features, as shown in Figure S2. We identified and removed five redundant features (N, C, G, α and N_p) that exhibited correlations exceeding 0.8, reducing the feature count to 17. The Recursive Feature Elimination¹ (RFE) method, supported by the Gradient Boosting Regression (GBR) algorithm, was then employed to further minimize the feature set. Root mean squared error (RMSE) and determination coefficient (R²), averaged from 10 training runs, guided the iterative removal of features, a process depicted in Figure S3.

Figure S2: The Pearson correlation coefficients of the 14 features about transition metal atoms.

Figure S3: Extraction of important features by RFE for (a) ΔG_{*CO_2} and (b) ΔG_{*OH} .

Combining the results of RFE and considering the interpretability and accuracy of the

model, ultimately, the features N_d , R, and eight coordination-related features were selected for the final model, as listed in Table S2. These features did not require additional density functional theory (DFT) calculations, thereby facilitating the exploration of a broader chemical space.

Features	Description	Features	Description
N_d	Number of d electrons	R	Atomic radii
D_B P_1 P_3 P_5	Doping with B atom Doping of position 1 Doping of position 3 Doping of position 4	$D_C \\ P_2 \\ P_4 \\ P_6$	Doping with C atom Doping of position 2 Doping of position 4 Doping of position 6

Table S2: 10 Features Used in the Final Model in Predicting ΔG_{*CO_2} and ΔG_{*OH}

Figure S4: Performance of the models constructed through different algorithms: ABR, DTR, GBR and RFR in predicting (a) ΔG_{*CO_2} and (b) ΔG_{*OH} .

In terms of machine learning models, we evaluated four regression algorithms from the scikit-learn¹ library: Adaptive Boosting Regressor (ABR), Decision Tree Regressor (DTR), Gradient Boosted Regression (GBR) and Random Forest Regressor (RFR). These models were assessed based on their RMSE and R², with results showcased in Figure S4. A fivefold cross-validation on the training dataset was conducted to fine-tune the hyperparameters. Although most models performed adequately for predicting ΔG_{*CO_2} , only the GBR model demonstrated robust performance for ΔG_{*OH} , making it the preferred choice for subsequent ML modeling.

Figure S5: The height of Si and TM atoms away from the graphene plane in different SiTMN $_6$ DACs.

Figure S6: Three possible SiTMN₆ DACs structures. And distribution heatmap of different structures.

Figure S7: The bond length between Si atoms and N atoms on different SiTMN $_6$ DACs.

Figure S8: Before and after adsorption, the partial density of states (PDOS) for the TM d and CO₂ orbitals of SiNbN₆, SiMoN₆ and SiRhN₆ DACs, respectively. The top image represents the state before adsorption, while the bottom image shows the state after adsorption.

Figure S9: Before and after adsorption, the PDOS for the Si 3p, Fe 3d and CO₂ orbitals of SiFeN₆ and Fe₂N₆ DACs, respectively. The top image represents the state before adsorption, while the bottom image shows the state after adsorption.

Figure S10: The PDOS for the Si 3p, Fe 3d and O in *CHO on SiFeN₆ DACs. And the PDOS for the Fe 3d and O in *CHO on Fe₂N₆ DACs.

Group	$ \mathbf{TM} $	$\Delta G_{ m max}$	Product	Potential-determining Step
IIIB	Sc	0.33	CH_4	$^{*}OH \rightarrow ^{*}H_{2}O$
	Y	0.26	CH_4	$^{*}OH \rightarrow ^{*}H_{2}O$
	Ti	0.41	CH_4	$^{*}\mathrm{OH} \rightarrow^{*} \mathrm{H}_{2}\mathrm{O}$
IVB	Zr	0.43	CH_4	$^{*}\mathrm{OH} \rightarrow^{*} \mathrm{H}_{2}\mathrm{O}$
	Hf	0.44	CH_4	$^{*}\mathrm{OH} \rightarrow^{*} \mathrm{H}_{2}\mathrm{O}$
	V	0.49	CH_4	$^{*}\mathrm{OH} \rightarrow^{*} \mathrm{H}_{2}\mathrm{O}$
VB	Nb	0.46	CH_4	$^{*}\mathrm{OH} \rightarrow^{*} \mathrm{H}_{2}\mathrm{O}$
	Ta	0.55	CH_4	$^{*}\mathrm{OH} \rightarrow^{*} \mathrm{H}_{2}\mathrm{O}$
	Cr	0.53	CH_4	$^{*}\mathrm{OH} \rightarrow^{*} \mathrm{H}_{2}\mathrm{O}$
VIB	Mo	0.50	CH_4	$^{*}OH \rightarrow^{*} H_{2}O$
	W	0.50	CH_4	$^*\rm OH \rightarrow ^*\rm H_2\rm O$
	Mn	0.33	CH_4	$^{*}\mathrm{OH} \rightarrow^{*} \mathrm{H}_{2}\mathrm{O}$
VIIB	Tc	0.59	CH_4	$^{*}\mathrm{CO} + ^{*}\mathrm{OH} \rightarrow ^{*}\mathrm{CO} + ^{*}\mathrm{H}_{2}\mathrm{O}$
	Re	0.58	CH_4	$*CO + *OH \rightarrow *CO + *H_2O$
	Fe	0.28	CH_4	$^{*}\mathrm{OH} \rightarrow ^{*}\mathrm{H}_{2}\mathrm{O}$
	Ru	0.53	CH_4	$^{*}\mathrm{OH} \rightarrow^{*} \mathrm{H}_{2}\mathrm{O}$
	Os	0.52	CH_4	$^{*}\mathrm{OH} \rightarrow^{*} \mathrm{H}_{2}\mathrm{O}$
	Co	0.17	$\rm CH_3OH$	$^{*}\mathrm{OH} \rightarrow^{*} \mathrm{H}_{2}\mathrm{O}$
VIII	Rh	0.13	CH_3OH	$^{*}\mathrm{OH} \rightarrow^{*} \mathrm{H}_{2}\mathrm{O}$
	Ir	0.08	CH_4	$^{*}\mathrm{OH} \rightarrow^{*} \mathrm{H}_{2}\mathrm{O}$
	Ni	0.26	CH_4	$^{*}\mathrm{OH} \rightarrow^{*} \mathrm{H}_{2}\mathrm{O}$
	Pd	0.22	CH_4	$^{*}\mathrm{OH} \rightarrow^{*} \mathrm{H}_{2}\mathrm{O}$
	Pt	0.18	CH_4	$^{*}\mathrm{OCH}_{2}\mathrm{OH} \rightarrow ^{*}\mathrm{OCH}_{2}\mathrm{OH}_{2}$
IB	Cu	0.54	CH_4	$^{*}\mathrm{OH} \rightarrow^{*} \mathrm{H}_{2}\mathrm{O}$
	Ag	0.52	CH_4	$^{*}\mathrm{OH} \rightarrow^{*} \mathrm{H}_{2}\mathrm{O}$
IIP	Zn	0.23	CH_4	$^{*}\mathrm{OH} \rightarrow^{*} \mathrm{H}_{2}\mathrm{O}$
ШΒ	Cd	0.32	CH_4	$^{*}\mathrm{OH} \rightarrow^{*} \mathrm{H}_{2}\mathrm{O}$

Table S3: $\Delta G_{\rm max}$ of 27 SiTMN_6 DACs, Product and Potential-determining Step.

Figure S11: The relative Gibbs free energies in CO_2RR on $SiScN_6$ and $SiYN_6$ DACs under the applied potential of 0 V.

Figure S12: The relative Gibbs free energies in CO_2RR on $SiTiN_6$, $SiZrN_6$ and $SiHfN_6$ DACs under the applied potential of 0 V.

Figure S13: The relative Gibbs free energies in CO_2RR on $SiVN_6$, $SiNbN_6$ and $SiTaN_6$ DACs under the applied potential of 0 V.

Figure S14: The relative Gibbs free energies in CO_2RR on $SiCrN_6$, $SiMoN_6$ and $SiWN_6$ DACs under the applied potential of 0 V.

Figure S15: The relative Gibbs free energies in CO_2RR on $SiMnN_6$, $SiTcN_6$ and $SiReN_6$ DACs under the applied potential of 0 V.

Figure S16: The relative Gibbs free energies in CO_2RR on $SiFeN_6$, $SiRuN_6$ and $SiOsN_6$ DACs under the applied potential of 0 V.

Figure S17: The relative Gibbs free energies in CO_2RR on $SiCoN_6$, $SiRhN_6$ and $SiIrN_6$ DACs under the applied potential of 0 V.

Figure S18: The relative Gibbs free energies in CO_2RR on $SiNiN_6$, $SiPdN_6$ and $SiPtN_6$ DACs under the applied potential of 0 V.

Figure S19: The relative Gibbs free energies in CO_2RR on $SiCuN_6$ and $SiAgN_6$ DACs under the applied potential of 0 V.

Figure S20: The relative Gibbs free energies in CO_2RR on $SiZnN_6$ and $SiCdN_6$ DACs under the applied potential of 0 V.

Figure S21: The ΔG_{max} difference between HER with CO₂RR on different SiTMN₆ DACs.

Structure	U_{diss}
$\rm SiCoN_6$	0.09
SiRhN_6	0.75
$\rm Si Ir N_6$	1.08
$\rm SiCoN_5B$	0.43
$\rm SiCoN_5C$	0.35
$SiRhN_5B$	1.14
$\rm SiRhN_5C$	1.05
$\rm Si Ir N_5 B$	1.34
$\rm Si Ir N_5 C$	1.30

Table S4: Computed dissolution potential (U_{diss}) for selected structures.

Figure S22: Comparison of the adsorption free energies of *H, *H₂O, and *CO₂.

Figure S23: Before and after adsorption, the PDOS for the TM d, Si $3p_z$ and CO₂ orbitals of SiCrN₆, SiIrN₆, SiAgN₆ and Si₂N₆ DACs, respectively. The top image represents the state before adsorption, while the bottom image shows the state after adsorption.

Figure S24: The PDOS for the TM d and Si $3p_z$ on SiFeN₆, SiRuN₆ and SiOsN₆ DACs, respectively.

Figure S25: (a) Correlations between ε_d and ε'_{p_z} for different SiTMN₆ DACs; (b) Correlations between ε_d and ΔG_{\max} for different SiTMN₆ DACs.

Figure S26: Distribution of ΔG_{*CO_2} in the training data set as functions of feature of N_d .

Figure S27: ΔG_{*CO_2} and ΔG_{*OH} for different SiTMN₅An.

Figure S28: The relative Gibbs free energies in CO_2RR on $SiCoN_5B2$ and $SiCoN_5C2$ DACs under the applied potential of 0 V.

Figure S29: The relative Gibbs free energies in CO_2RR on SiRhN₅B2 and SiRhN₅C2 DACs under the applied potential of 0 V.

Figure S30: The relative Gibbs free energies in CO_2RR on SiIrN₅B2 and SiIrN₅C2 DACs under the applied potential of 0 V.

Figure S31: Correlations between N_{p_z} and ΔG_{max} of SiTMN₆ DACs and screened SiTMN₅An DACs.

Number	Structure	$\Delta G_{ m OH ightarrow m H_2O}$	Number	Structure	$\Delta G_{ m OH ightarrow m H_2O}$
01	IrB2	-0.27	18	VB2	0.11
02	IrC2	-0.19	19	TcB2	0.11
03	RhC2	-0.12	20	MnC2	0.12
04	RhB2	-0.11	21	RuB2	0.13
05	CoB2	-0.09	22	CrB2	0.13
06	CoC2	-0.04	23	NbB2	0.16
07	IrC4	0.00	24	MoC2	0.17
08	IrC1	0.01	25	WC2	0.21
09	MoC1	0.02	26	IrB1	0.21
10	RhC6	0.03	27	RuC2	0.22
11	IrC6	0.06	28	VC2	0.22
12	MoB2	0.06	29	CrC2	0.24
13	MnB2	0.07	30	MoC3	0.26
14	ReB2	0.07	31	CoC5	0.26
15	OsB2	0.08	32	IrC5	0.26
16	RhC1	0.09	33	CrC1	0.32
17	WB2	0.10			

Table S5: Screening Results of Dopant Candiates Identified after Considering the ΔG_{*CO_2} and ΔG_{*OH} .

References

 Pedregosa, F. et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research 2011, 12, 2825–2830.