Supporting Information

Study of Structural and Composition Redesign to Enhanced the Thermostability and Electrochemical Performance of Co-less Nirich LiNi0.92Co0.04Mn0.04O2 Layered Cathode through Transition-metal Concentration Gradient Strategies

Yola Bertilsya Hendri^a, Manojkumar Seenivasan^a, Juliya Jeyakumar^a, Yi-Shiuan Wu^a, She-Huang Wu^{a,c}, Jeng-Kuei Chang^d, Amun Amri^f, Rajan Jose^{a,e}, Chun-Chen Yang^{a,b,g*}

^aBattery Research Center of Green Energy, Ming Chi University of Technology, Taishan, New Taipei City, 24301, Taiwan

^bDepartment of Chemical Engineering, Ming Chi University of Technology, Taishan, New Taipei City, 24301, Taiwan

^cGraduate Institute of Science and Technology, National Taiwan University of Science and Technology, 43, Sec. 4, Keelung Road, Taipei 106, Taiwan

^dDepartment of Materials Science and Engineering, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu, 30010, Taiwan

^eNanostructured Renewable Energy Materials Laboratory, Faculty of Industrial Sciences and Technology, University Malaysia Pahang, 26300 Kuantan, Malaysia

^fDepartment of Chemical Engineering, University of Riau, Panam, Pekanbaru, 28293, Indonesia

^gDepartment of Chemical and Materials Engineering, and Green Technology Research Center, Chang Gung University, Taoyuan City 333, Taiwan

*Corresponding author. Tel.: +886 2 29089899 ext.4962/4952;

fax: +886 2 29085941.

E-mail: <u>ccyang@mail.mcut.edu.tw</u> (C.-C. Yang)

Fig. S1. Schematic diagram of FG-NCM92 synthesis process by using a novel scalable Taylor–Vortex Reactor (TVR).

Fig. S2. The morphological evolution of P-FG-NCM92 hydroxide particles as a function of reaction time synthesis by using a novel scalable Taylor–Vortex Reactor (TVR): (a). 10 h, (b). 15 h, (c). 20 h, (d). 25 h, (e). 30 h, (f). 35 h, respectively.

Fig. S3. EDX images of FG-Ni $_{0.92}$ Co $_{0.04}$ Mn $_{0.04}$ (OH) $_2$ precursors synthesized by using TVR reactor

at (a) 10 h, and (b) 20 h.

Fig. S4. The EDS graph of (a) area core and (b) area surface in the FG-Ni_{0.92}Co_{0.04}Mn_{0.04}(OH)₂, and (c) single particle of FG-Ni_{0.92}Co_{0.04}Mn_{0.04}(OH)₂.

Fig. S5. FESEM-EDS-line-scanning of Ni, Co, Mn for P-NG-NCM92 precursors synthesized by a Taylor-Vortex Reactor (TVR).

Fig. S6. Particle size distribution of (a) P-NG-NCM92 (black line), and (b) P-FG-NCM92 (blue line) hydroxide precursors.

Fig. S7. XRD Rietveld refinement results of (a) NG-NCM92, and (b) FG-NCM92 layered oxides cathode materials, respectively.

Fig. S8. BET specific surface area and pore size distribution (shown in the inset) of NG-NCM92 and FG-NCM92 layered oxide cathode materials.

Fig. S9. SEM-EDS-line-scanning of Ni, Co, Mn for FG-NCM92 cathode.

Fig. S10. Particle size distribution of NG-NCM92 (black line) and FG-NCM92 (blue line) cathode oxide materials.

Fig. S11. The FFT and IFFT analysis of (a) NG-NCM92, and (b) FG-NCM92 layered oxide cathode materials.

Fig. S12. The electrochemical performance of FG-NCM92//Graphite Pouch cells: (a). The charge and discharge profiles at 0.1C/0.1C, (b). The charge and discharge profiles at 1C/1C, (c). Long-term cycling performance of FG-NCM92//Graphite based on Pouch-type full-cells (Size: 3 × 5 cm²).

Fig. S13. Differential capacity (dQ/dV) curves of (a) FG-NCM92, and (b) NG-NCM92 cathodes at 1C/1C in the voltage window of 2.8–4.3 V at RT for 200 cycles.

Fig. S14. Observed initial in-situ XRD pattern and XRD pattern at selected 2^{θ} regions during initial cycles of charge/discharge process for (a) NG-NCM92, and (b) FG-NCM92 electrodes, respectively.

Fig. S15. In-situ XRD patterns at selected 2θ regions during second cycles for (a). NG-NCM92, (b). FG-NCM92 samples, respectively.

Fig. S16. Operando micro-calorimetry results for CR2032 coin cells containing: (a) NG-NCM92, and (b) FG-NCM92 electrodes at 1C/1C (in voltage window of 2.8–4.3 V (vs. Li/Li⁺)) in isothermal conditions at 35°C with heating rate of 0.5°C min⁻¹ (Potential (black line), current (blue line), and heat flux (red line).

Fig. S17. The transition metal dissolution properties of NG-NCM92 and FG-NCM92 cathodes, which were measured by inductively coupled plasma mass spectrometry (ICP-MS): (a). Ni, (b). Co, (c). Mn.

Sample	a (A)	c (A)	V (A ³)	c/a	FWHM of (003)	$R = I_{(003)}/I_{(104)}$	Crystallite size (nm)	R _{wp} ^d (%)	GoF ^e
NG- NCM92	2.874	14.193	101.544	4.938	0.162	1.78	49.62	3.66	1.84
FG- NCM92	2.873	14.195	101.451	4.942	0.156	1.82	51.46	3.92	2.07

Table S1. Rietveld refinement results of NG-NCM92 and FG-NCM92 layered oxide materials.

Table S2. The in-situ XRD lattice parameters for NG-NCM92 and FG-NCM92 layered oxide materials during initial cycles.

	NG	-NCM92		FG-NCM92			
	Lithiated	Delithiated	Δ _{max} (%)	Lithiated	Delithiated	Δ _{max} (%)	
	state	state		state	state		
c-axis (Å)	14.527	14.387	0.97	14.433	14.361	0.49	
<i>a</i> -axis (Å)	2.850	2.833	0.61	2.846	2.831	0.35	
Unit-cell	101.50	100.11	1.37	100.74	99.873	0.86	
volume (Å ³)							

Table S3. Fitting results of EIS spectra of NG-NCM92 and FG-NCM92 electrodes before cyclingand after 200 cycles.

	Before	After 200 Cycles			
Sample	NG-NCM92	FG-NCM92	NG-NCM92	FG-NCM92	
R _b (Ω)	3.76	1.55	4.63	3.05	
$R_{CEI}(\Omega)$			6.17	6.10	
$R_{int}(\Omega)$			20.50	18.00	
$R_{ct}(\Omega)$	138.50	118.50	610.00	581.80	

Table S4. The Total Exothermic Heat Generation (*Q*_t) and heat reduction of the NG-NCM92//Li coin-type cell and FG-NCM92//Li coin-type during charge/discharge processes at 35 °C.

		* Q t (J g ⁻¹)		Heat reduction		
Electrode	Total neat generation			(%) vs. NG-NCM92		
		Charge	Discharge	Charge	Discharge	
NG-NCM92		-18.94	-26.59			
FG-NCM92		-17.57	-23.04	7.2	13.4	

*A negative Q_t value indicates an exothermic heat release