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Fig. S1. Schematic diagram of FG-NCM92 synthesis process by using a novel scalable Taylor–Vortex Reactor (TVR).
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Fig. S2. The morphological evolution of P-FG-NCM92 hydroxide particles as a function of 

reaction time synthesis by using a novel scalable Taylor–Vortex Reactor (TVR): (a). 10 

h, (b). 15 h, (c). 20 h, (d). 25 h, (e). 30 h, (f). 35 h, respectively.
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Fig. S3. EDX images of FG-Ni0.92Co0.04Mn0.04(OH)2 precursors synthesized by using TVR reactor 

   

              at (a) 10 h, and (b) 20 h.
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    Fig. S4. The EDS graph of (a) area core and (b) area surface in the FG-Ni0.92Co0.04Mn0.04(OH)2, 

and (c) single particle of FG-Ni0.92Co0.04Mn0.04(OH)2.
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Fig. S5. FESEM-EDS-line-scanning of Ni, Co, Mn for P-NG-NCM92 precursors synthesized by

              a Taylor-Vortex Reactor (TVR).
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Fig. S6. Particle size distribution of (a) P-NG-NCM92 (black line), and (b) P-FG-NCM92 (blue 

line) hydroxide precursors.
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Fig. S7. XRD Rietveld refinement results of (a) NG-NCM92, and (b) FG-NCM92 layered oxides 

cathode materials, respectively.
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Fig. S8. BET specific surface area and pore size distribution (shown in the inset) of NG-NCM92 

and FG-NCM92 layered oxide cathode materials.
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Fig. S9. SEM-EDS-line-scanning of Ni, Co, Mn for FG-NCM92 cathode.
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Fig. S10. Particle size distribution of NG-NCM92 (black line) and FG-NCM92 (blue line) cathode 

oxide materials.
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Fig. S11. The FFT and IFFT analysis of (a) NG-NCM92, and (b) FG-NCM92 layered oxide 

               cathode materials.
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Fig. S12.  The electrochemical performance of FG-NCM92//Graphite Pouch cells: (a). The charge 

and discharge profiles at 0.1C/0.1C, (b). The charge and discharge profiles at 1C/1C, 

(c). Long-term cycling performance of FG-NCM92//Graphite based on Pouch-type full-

cells (Size: 3  5 cm2).
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Fig. S13. Differential capacity (dQ/dV) curves of (a) FG-NCM92, and (b) NG-NCM92 cathodes 

at 1C/1C in the voltage window of 2.8–4.3 V at RT for 200 cycles.
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Fig. S14. Observed initial in-situ XRD pattern and XRD pattern at selected 2  regions during 𝜃

initial cycles of charge/discharge process for (a) NG-NCM92, and (b) FG-NCM92 

electrodes, respectively. 
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Fig. S15. In-situ XRD patterns at selected 2θ regions during second cycles for (a). NG-NCM92, 

(b). FG-NCM92 samples, respectively.
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Fig. S16. Operando micro-calorimetry results for CR2032 coin cells containing: (a) NG-NCM92, 

and (b) FG-NCM92 electrodes at 1C/1C (in voltage window of 2.8–4.3 V (vs. Li/Li+)) 

in isothermal conditions at 35˚C with heating rate of 0.5˚C min-1 (Potential (black line), 

current (blue line), and heat flux (red line).
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Fig. S17. The transition metal dissolution properties of NG-NCM92 and FG-NCM92 cathodes,   

                which were measured by inductively coupled plasma mass spectrometry (ICP-MS): (a). 

Ni, (b). Co, (c). Mn. 



S19

Table S1. Rietveld refinement results of NG-NCM92 and FG-NCM92 layered oxide materials.

 Sample a (A) c (A) V (A
3
) c/a FWHM 

of (003)
R = 

I
(003)

/I
(104)

Crystallite 
size (nm)

R
wp

d 

(%)
GoF

e

NG-
NCM92 2.874 14.193 101.544 4.938 0.162 1.78 49.62 3.66 1.84

FG-
NCM92 2.873 14.195 101.451 4.942 0.156 1.82 51.46 3.92 2.07

Table S2. The in-situ XRD lattice parameters for NG-NCM92 and FG-NCM92 layered oxide 

materials during initial cycles.

NG-NCM92 FG-NCM92

Lithiated 

state

Delithiated 

state

∆max (%) Lithiated 

state

Delithiated 

state

∆max (%)

c-axis (Ǻ) 14.527 14.387 0.97 14.433 14.361 0.49

a-axis (Ǻ) 2.850 2.833 0.61 2.846 2.831 0.35

Unit-cell 

volume (Ǻ3)

101.50 100.11 1.37 100.74 99.873 0.86

 

Table S3. Fitting results of EIS spectra of NG-NCM92 and FG-NCM92 electrodes before cycling 

and after 200 cycles.

Before Cycling After 200 Cycles
Sample NG-NCM92 FG-NCM92 NG-NCM92 FG-NCM92
Rb() 3.76 1.55 4.63 3.05

RCEI()   6.17 6.10
Rint()   20.50 18.00
Rct() 138.50 118.50 610.00 581.80
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Table S4. The Total Exothermic Heat Generation (Qt) and heat reduction of the NG-NCM92//Li 

coin-type cell and FG-NCM92//Li coin-type during charge/discharge processes at 35 oC.

*Qt 
(J g–1)

Heat reduction

(%) vs. NG-NCM92
Total heat generation

Electrode
Charge Discharge Charge Discharge

NG-NCM92 -18.94 -26.59  

FG-NCM92 -17.57 -23.04 7.2 13.4

*A negative Qt value indicates an exothermic heat release


