Supplementary Information (SI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2024

Supporting Materials

Construction of photonic radiative cooling layer based on 3D conductive network foam for efficient electromagnetic interference shielding and environmental thermal comfort

Mingtai Liu, Hongjian Huang*, Jie Mei, Siqi Yang*, Hao Tu, Jian Wang*

Key Laboratory of materials and surface technology (Ministry of Education), School of Materials Science and Engineering, Xihua University, Chengdu 610039, People's Republic of China

*Corresponding author.

E-mail address: wangjianxhu@163.com (Jian Wang)

Postal address: No. 999 Jinzhou Road, Chengdu 610039, People's Republic of China

Materials

MF was purchased from Shanghai Beiyou Construction Materials Co., Ltd., China. Aramid paper was acquired from DuPont, USA. Pyrrole (C₄H₅N) was bought by Macklin Biochemica Technology Co., Ltd., Shanghai, China. Polydimethylsiloxane (PDMS) and the curing agent were procured by Dow Corning Corporation, USA. High purity Al₂O₃ powder was purchased from Hebei Juli Metal Material Co., Ltd., China. Conductive silver paint was purchased from the Shenzhen Jingche Technology Enterprise Shop. Ammonia (NH₃·H₂O), ferric chloride (FeCl₃·6H₂O), ferrous sulfate (FeSO₄·7H₂O), ethyl acetate (C₄H₈O₂) was acquired uniformly from Chengdu Kelong Chemicals Co., Ltd., China. Deionized water for experiments was prepared by Q-20C purification system.

Characterization

The micromorphology and elemental mapping of samples were investigated with field emission scanning electron microscope (FE-SEM, ZEISS Gemini 300, Germany) and energy dispersive spectrometer (EDS, Smarted X). An X-ray diffractometer (XRD, Rigaku SmartLab SE, Japan) was applied to characterize the crystal structure of samples. The electrical conductivity and magnetic properties of the samples were determined by the four-probe method (ST2643F and ST2258C) and vibrating sample magnetometer (VSM, Lake Shore 7404, USA). Optical reflectance (R) and transmittance (T) of the samples were measured in the range of 200-2500 nm using a UV-Visible Near Infrared Spectrophotometer (Japan-Shimadzu-UV-3600 plus). The infrared thermal emissivity was collected by a Fourier infrared spectrometer (Bruker invenio s) with a measurement range of 2.5-25 µm. Full-spectrum metal halide lamp (UVB, Huizhou Jinke Lighting Technology Co.) was used to provide simulated sunlight. A solar power meter pyranometer (TES 132) was used to measure the light

intensity of the sunlight. A vector network analyzer (Agilent PNA-N5234A-USA) was used to acquire the S-parameters of the samples by the waveguide method. The total shielding effectiveness (SE_T), reflection shielding effectiveness (SE_R), absorption shielding effectiveness (SE_A), multiple reflection shielding (SE_M) and the power coefficient of absorption (A), reflection (R) and transmission (T) were calculated as follows:

$$R = |S_{11}|^2, T = |S_{21}|^2 \tag{1}$$

$$A = 1 - R - T \tag{2}$$

$$SE_A = -10\lg\left(|S_{21}|^2 / (1 - |S_{11}|^2)\right) = -10\lg\left(T / (1 - R)\right)$$
(3)

$$SE_{R} = -10\lg\left(1 - |S_{11}|^{2}\right) = -10\lg\left(1 - R\right)$$
(4)

$$SE_T = SE_A + SE_R + SE_M \tag{5}$$

In general, SE_M is negligible when the SE_T>15dB, and SE_T can be expressed as:

$$SE_T = SE_A + SE_R \tag{6}$$

Fig. S1 SEM image of MF@PPy at high magnification.

Fig. S2 (a, b) SEM images of PPy@Fe₃O₄ particles. (a1-a4) EDS mapping images of PPy@Fe₃O₄ particles.

Fig. S3 (a) SEM image and (b-e) EDS mapping images of AgP.

Fig. S4 Optical image of AgP/PDMS/Al₂O₃ layer.

Fig. S5 (a) SEM image of the surface of the AgP/PDMS/Al₂O₃ layer. (b) SEM image of AgP/PDMS/Al₂O₃ layer cross sections. (b1-b6) EDS mapping images of AgP/PDMS/Al₂O₃ layer cross sections.

Fig. S6 Digital images of samples after bending 1000 times.

Fig. S7 SEM image of the MPF.

Fig. S8 A practical EMI shielding application measurement in a Tesla coil system with (a) non-shielding and (b) shielding.

Fig. S9 (a) Real-time temperature profile, (b) temperature difference and (c) average temperature difference for MPPF-A₁PA₂ and A₁PA₂ outdoor cooling tests.

Fig. S10 Solar radiation intensity when (a) glass sheet, (b) Al sheet and (c) wood sheet are used as substrates.

Fig. S11 (a) Real-time temperature profile, (b) solar radiation intensity and (c) ice cube weightlessness of MPPF-A₁PA₂ composite for ice melt retardation experiment.

	EMI		
Samples	SE	Α	Reference
	(dB)		
TPU/CNT/Ag	79.4	0.46	1
PF/Fe ₃ O ₄ @PPy/Cu	41.1	0.8	2
TPU/AgNR foam	35.5	0.915	3
MPP-MXene/CNF	47.2	0.972	4
Ni@MF-5/CNT-75/PBAT	38.3	0.19	5
VMQ/Fe ₃ O ₄ @MWCNT/Ag@NWF	90	0.46	6
NiM10/PCM	34.6	0.835	7
Ni@MF/CNT3/TSM/PDMS	45.3	0.72	8
rGO@Fe ₃ O ₄ /T-ZnO/Ag/WPU	87.2	0.61	9
VMQ/Ag@GF/MWCNT/Fe ₃ O ₄	78.6	0.82	10
Sb ₂ O ₃ -Ni-MWCNTs/PDMS	54.4	0.51	11
Silicone rubber/Ag@HGMs/Fe ₃ O ₄ @MWCNTs	59.4	0.41	12
FA-CNF/MXene/FA-CNF	63.9	0.33	13
CNF-MXene composite aerogels	93.5	0.26	14
MXene/ANFs hybrid aerogel	56.8	0.09	15
MPPF-A ₁ PA ₂	65.0	0.79	This work

Table S1 Comparison of EMI shielding properties of this work with other EMI shielding materials.

Table S2 Comparison of cooling performances of the radiative cooling materials.

Materials	Year	Temperature drop (°C)	Solar irradiance (W m ⁻²)	Reference
PDMS/Al ₂ O ₃	2020	5	862	16
SiO ₂ /TiO ₂ /PDMS/Al	2022	5.3	523	17

AlPO ₄ /PDMS fabric	2020	5.4	998	18
Porous PDMS sponge	2021	4.6	900	19
PDMS/Al	2021	2.4	760	20
PMMA/SiO ₂	2021	6.0-8.9	900	21
PDMS/PE aerogel	2020	5.0-6.0	1000	22
HDPE/Cr ₂ O ₃ /TiO ₂	2021	7.0	1100	23
SiO2@TiO2/PDMS/Al	2022	6.9	1000	24
PVDF/BaSO ₄ /SiO ₂	2021	5.1	803	25
SiO ₂ /Al	2021	7.3	633	26
BaSO ₄ /P(VDF-HFP)	2022	2.0	1000	27
MPPF-A ₁ PA ₂		8.7	713	This work

Notes and references

- B. Sun, S. Sun, P. He, H.-Y. Mi, B. Dong, C. Liu and C. Shen, *Chem. Eng. J.*, 2021, 416, 129083.
- 2 W. Chu, J. Li, J. Lin, W. Li, J. Xin, F. Liu, X. He, Z. Ma and Q. Zhao, Compos. Sci. Technol., 2024, 249, 110489.
- 3 Z. Li, Y. Shen, Y. Zhou, B. Zhou, C. Liu and Y. Feng, J. Mater. Sci. Technol., 2024, 197, 9–16.
- 4 J. Tang, M. Fu, T. Zhang, T. Zuo, W. Feng, W. Wang and D. Yu, *Polymer*, 2024, 308, 127354.
- 5 B. Xue, Y. Li, Z. Cheng, S. Yang, L. Xie, S. Qin and Q. Zheng, *Nano-Micro Lett.*, 2022, **14**, 16.
- 6 J. Yang, X. Liao, G. Wang, J. Chen, W. Tang, T. Wang and G. Li, J. Mater. Chem. C, 2020, 8, 147–157.

- 7 H. Cheng, L. Xing, Y. Zuo, Y. Pan, M. Huang, A. Alhadhrami, M. M. Ibrahim, Z. M. El-Bahy, C. Liu, C. Shen and X. Liu, *Adv. Compos. Hybrid Mater.*, 2022, 5, 755–765.
- 8 Q. Peng, M. Ma, Q. Chu, H. Lin, W. Tao, W. Shao, S. Chen, Y. Shi, H. He and X. Wang, J. Mater. Chem. A, 2023, 11, 10857–10866.
- 9 Y. Xu, Y. Yang, D.-X. Yan, H. Duan, G. Zhao and Y. Liu, ACS Appl. Mater. Interfaces, 2018, 10, 19143–19152.
- 10J. Yang, X. Liao, G. Wang, J. Chen, P. Song, W. Tang, F. Guo, F. Liu and G. Li, *Compos. Sci. Technol.*, 2021, 206, 108663.
- 11Q.-M. He, J.-R. Tao, Y. Yang, D. Yang, K. Zhang, B. Fei and M. Wang, Composites, Part A, 2022, **156**, 106901.
- 12J. Yang, X. Liao, G. Wang, J. Chen, F. Guo, W. Tang, W. Wang, Z. Yan and G. Li, *Chem. Eng. J.*, 2020, **390**, 124589.
- 13Z. Guo, P. Ren, J. Wang, J. Tang, F. Zhang, Z. Zong, Z. Chen, Y. Jin and F. Ren, *Composites, Part B*, 2022, **236**, 109836.
- 14H. Wang, Y. Jiang, Z. Ma, Y. Shi, Y. Zhu, R. Huang, Y. Feng, Z. Wang, M. Hong,J. Gao, L. Tang and P. Song, *Adv. Funct. Mater.*, 2023, 33, 2306884.
- Lu, F. Jia, L. Zhuo, D. Ning, K. Gao and F. Xie, Composites, Part B, 2021, 217, 108853.
- 16T. Li, Y. Zhai, S. He, W. Gan, Z. Wei, M. Heidarinejad, D. Dalgo, R. Mi, X. Zhao, J. Song, J. Dai, C. Chen, A. Aili, A. Vellore, A. Martini, R. Yang, J. Srebric, X. Yin and L. Hu, *Science*, 2019, **364**, 760–763.

- 17Y. Sun, M. Javed, Y. Ji, M. Z. Nawaz, Y. Wang, Z. Cai and B. Xu, Sol. Energ. Mat. Sol. C., 2022, 245, 111836.
- 18S. Zhong, L. Yi, J. Zhang, T. Xu, L. Xu, X. Zhang, T. Zuo and Y. Cai, *Chem. Eng. J.*, 2021, **407**, 127104.
- 19L. Zhou, J. Rada, H. Zhang, H. Song, S. Mirniaharikandi, B. S. Ooi and Q. Gan, Adv. Sci., 2021, 8, 2102502.
- 20K. Lin, L. Chao, T. C. Ho, C. Lin, S. Chen, Y. Du, B. Huang and C. Y. Tso, *Energ. Buildings*, 2021, **252**, 111400.
- 21 T. Wang, Y. Wu, L. Shi, X. Hu, M. Chen and L. Wu, Nat. Commun., 2021, 12, 365.
- 22M. Yang, W. Zou, J. Guo, Z. Qian, H. Luo, S. Yang, N. Zhao, L. Pattelli, J. Xu and D. S. Wiersma, ACS Appl. Mater. Interfaces, 2020, 12, 25286–25293.
- 23Z. Yang, T. Jiang and J. Zhang, Sol. Energ. Mat. Sol. C., 2021, 219, 110783.
- 24D. Hu, S. Sun, P. Du, X. Lu, H. Zhang and Z. Zhang, *Composites, Part A*, 2022, 158, 106949.
- 25Z. Cheng, H. Han, F. Wang, Y. Yan, X. Shi, H. Liang, X. Zhang and Y. Shuai, Nano Energy, 2021, 89, 106377.
- 26L. Carlosena, Á. Andueza, L. Torres, O. Irulegi, R. J. Hernández-Minguillón, J. Sevilla and M. Santamouris, Sol. Energ. Mat. Sol. C., 2021, 230, 111209.
- 27D. Han, J. Fei, J. Mandal, Z. Liu, H. Li, A. P. Raman and B. F. Ng, Sol. Energ. Mat. Sol. C., 2022, 240, 111723.