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1. Supporting figures: Figure S1~S12 

 

Figure S1. Contact angle measurements of carbon cloth before and after 

pretreatment. (a) Contact angle of pure CC before pretreatment. (b) Contact angle 

of pure CC after pretreatment. (c) Comparison of contact angles of carbon cloth 

before and after pretreatment. 

 

Figure S2. Cyclic voltammetric deposition curves of CoS at different scanning rates. 

 



 

Figure S3. (a) SEM images for the carbon cloth (CC); (b) SEM images for the graphene 

oxide /carbon cloth (rGO@CC). 

 

Figure S4. (a) XPS survey spectrum of CoS/rGO@CC verifies the presence of Co, O, 

C and S components in the material. High-resolution (b) C 1s spectra disclose the 

detailed chemical valences for C element. 



 

Figure S5. The EDX spectrum of CoS nanosheets on the copper mesh revealed the 

presence of both Co and S components in the composite material, indicating the 

successful synthesis of CoS. 

 

 

 



 

Figure S6. Nyquist plots of EIS and the corresponding fitting curve for the 

CoS/rGO@CC electrode, demonstrating excellent agreement between the fitting results 

and experimental data. The inset displays the equivalent circuit diagram. 

 

Figure S7. HER (S site adsorption) structure of pure CoS. 

a b



 

Figure S8. HER (Co site adsorption) structure of pure CoS, (a) top view (left) and (b) 

side view (right). 

 

Figure S9. rGO sites in DFT calculations. 

 

Figure S10. Design idea of DFT computational modeling. 



  

Figure S11. HER structure of CoS/rGO combined model, (a) top view (left) and (b) 

side view (right). 

 

Figure S12. Water ion adsorption configuration of pure rGO during the HER process, 

(a) top view (left) and (b) side view (right). 

 



 

Figure S13. Water ion adsorption configuration of pure CoS during the HER process,  

(a) top view (left) and (b) side view (right). 

 

 

Figure S14. Water ion adsorption configuration of CoS/rGO during the HER process, 

(a) top view (left) and (b) side view (right). 

 



 

Figure S15. (a-b) presents SEM images of CoS/rGO@CC after stability test, while (c) 

displays elemental mappings of C, Co, S, and O.  

 

Figure S16. The EDX spectrum of CoS/rGO@CC after stability test. 



 

Figure S17. High-resolution Co 2p XPS spectra of CoS/rGO@CC after the OER 

reaction. 

 

 

 

 

 

 

 



2. Supporting tables: Table S1~S10 

Table S1. Comparison of HER activity of CoS/rGO@CC catalyst with other reference 

electrodes in 1 M KOH. 

Electrolyte Electrode 

Onset 

potential 

(mV) 

Potential at 10 

mA cm−2(mV) 

Potential at 50 

mA cm−2(mV) 

Tafel slope 

(mV dec−1) 

      

1 M KOH 

20% Pt/C 6.3 47.3 169.3 31.2 

CoS/rGO@CC 6.3 76.3 226.3 69 

CoS@CC 230.3 441.3 707.3 194 

rGO@CC 296.3 573.3 815.3 237 

 

 

 

 

 

 

 

 



 

Table S2. Comparison of the HER performance of CoS/rGO@CC catalyst with recent 

state-of-the-art cobalt-based catalysts in KOH. 

Electrolyte Catalyst 

η10 

(mV) 

Tafel slope 

(mV dec−1) 

Stability time Reference 

1 M KOH 

CoS/rGO@CC 76.3 69 24 This work 

CoSe/Ti 121 84 27 h [1] 

CoS2/MoS2/NC-25% 215 80 N.A. [2] 

PNC/Co 298 131 10 h [3] 

Co4S3-NSC 352.3 150.6 N.A. [4] 

Co-2-Ni-0.5-NC 359 373.6 N.A. [5] 

Co-NRCNTs 370 N.A. 10 h [6] 

Co/NGC 392 145 N.A. [7] 

 

 

 

 

 

 

 



 

Table S3. Comparison of OER activity of CoS/rGO@CC catalyst with other reference 

electrodes in 1 M KOH. 

Electrolyte Electrode 

Onset potential 

(mV) 

Potential at 10 

mA cm−2 (mV) 

Potential at 50 

mA cm−2 (mV) 

Tafel slope 

(mV dec−1) 

1 KOH 

RuO2 on CC 325.4 400.4 543.4 106.7 

CoS/rGO@CC 232.4 290.4 398.4 71 

CoS@CC 364.4 525.4 794.4 254 

rGO@CC 406.4 605.4 >1000 332 

 

 

 

 

 

 

 

 

 

 



 

Table S4. Comparison of the OER performance of CoS/rGO@CC catalyst with recent 

state-of-the-art cobalt-based catalysts in 1 M KOH. 

Electrolyte Catalyst 

η10 

(mV) 

Tafel slope 

(mV dec−1) 

Stability time Reference 

1 M KOH 

CoS/rGO@CC 290.4 71 24 h This work 

CoSe2@C–CNT 310 69 N. A. [8] 

CoSe2@NC 246.7 72.66 132 [9] 

Co-Nx|P-GC/FEG 320 54 10 h [10] 

P-CoS2-HNA/CC 250 90 24 h [11] 

EG/Ni3Se2/Co9S8 390 131 10 h [12] 

EG/H-Co0.85Se|P 410 76 10 h [13] 

CoSe2@VG/CC 418 74 25 h [14] 

NiO/Co3O4 240 73 48 h [15] 

 

 

 

 

 

 



 

Table S5. The charge-transfer resistance (Rct) of different electrodes. 

Electrode 

Rct 

Value (Ω) Error (%) 

20% Pt/C 3423 2.034 

RuO2 on CC 7.2357 0.649 

CoS/rGO@CC 6.3 6.955 

CoS@CC 374.41 0.792 

rGO@CC 103.54 0.895 

CC 1365 0.684 

 

 

 

 

 

 

 

 

 

 



 

Table S6. Comparison of overall water splitting voltages with various recently reported 

catalysts. 

Electrolyte Catalyst 

Voltage 

(mV) 

Reference 

1 M KOH 

CoS/rGO@CC||CoS/rGO@CC 744 This work 

CoS/rGO@CC||20% Pt/C 925 This work 

CoS/rGO@CC||RuO2 on CC 1005 This work 

RuO2@Co3O4(1:6)||RuO2@Co3O4(1:6) 1460 [16] 

DH-CuCo-P @ NC/CC||DH-CuCo-P @ 

NC/CC 

1494 [17] 

1T′/1T Co,P-SnS2||1T′/1T Co,P-SnS2 1530 [18] 

CoMoP@Co3O4-x||CoMoP@Co3O4-x 1614 [19] 

Co3O4–Mo2N NFs||Co3O4–Mo2N NFs 1650 [20] 

VOB-Co3O4/NF||VOB-Co3O4/NF 1670 [21] 

Co6Mo6C2/Co2Mo3O8||Co6Mo6C2/Co2Mo3O8 1810 [22] 

 

 

 

 

 

 

 

 



 

 

Table S7. Comparison of HER activity of CoS/rGO@CC catalyst with other reference 

electrodes in 0.5 M H2SO4. 

Electrolyte Electrode 

Onset 

potential 

(mV) 

Potential at 10  

mA cm−2(mV) 

Potential at 50  

mA cm−2(mV) 

Tafel slope 

(mV dec−1) 

0.5 M 

H2SO4 

20% Pt/C 15.4 31.4 82.4 34.1 

CoS/rGO

@CC 

12.4 41.4 121.4 45.2 

CoS@CC 45.4 113.4 363.4 112 

rGO@CC 53.4 132.4 412.4 135.4 

 

 

 

 

 

 

 

 



 

Table S8. Comparison of the HER performance of CoS/rGO@CC catalyst with recent 

state-of-the-art cobalt-based catalysts in 0.5 M H2SO4. 

Electrolyte Catalyst 

η10 

(mV) 

Tafel slope 

(mV dec−1) 

Stability time Reference 

0.5 M 

H2SO4 

CoS/rGO@CC 41 45 24 This work 

Co–P@PC-750 72 49 20 h [23] 

Fe/P-CoS2 80 56 10 h [24] 

CoP NFs 122 54.8 N. A. [25] 

CoP/Ni2P@HPNCP 130 64.91 30 h [25] 

Fe–CoSe2@NC 143 40.9 48 h [26] 

CoP/CN@ MoS2 144 69 N. A. [27] 

Sn-CoS2/CC 161 94 32 h [28] 

 Co-NRCNTs  260 69 8.5 h [6] 

 

 

 

 

 

 



 

Table S9. Comparison of HER activity of CoS/rGO@CC catalyst with other reference 

electrodes in 1 M PBS. 

Electrolyte Electrode 

Onset potential 

(mV) 

Potential at 10 

mA cm−2(mV) 

Potential at 50 

mA cm−2(mV) 

Tafel slope 

(mV dec−1) 

1 M PBS 

20% Pt/C 95.7 302.7 482.7 168.8 

CoS/rGO

@CC 

87.7 315.7 549.7 201.99 

CoS@CC 124.7 367.7 710.7 243.05 

rGO@CC 122.7 610.7 >1000 379.2 

 

 

 

 

 

 

 

 

 

 



 

Table S10. In neutral media, the HER performance of the CoS-rGO@CC catalyst is 

compared with that of recent advanced catalysts. 

Electrolyte Catalyst 

η10 

(mV) 

Tafel slope 

(mV dec−1) 

Stability 

time 

Refer

ence 

Natural 

Media 

CoS/rGO@CC 315 202 22 

This 

work 

CoO/CoSe2 337 131 9 h [29] 

FeP NPs@NPC 433 149 10 h [30] 

FeP/NCNSs 409 92 10 h [31] 

HF-MoSP-800 456 N. A. N. A. [32] 

Fe@N-CNT/IF 525 199.6 12 h [33] 

NiSx film 576 123 N. A. [34] 

CuS nanoparticles 584 316 14 h [35] 
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