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Growth process of SnSe NPs

The SnSe NPs were grown via a catalyst-free chemical vapour deposition (CVD) process in a single-zone 

horizontal tube furnace (Linderberg/Blue M). 15 mg of commercial SnSe powder (purity 99.99%) was 

placed in a quartz boat at the centre of the heating zone as the precursor material for evaporation, while 

seven pieces of 300 nm SiO2/Si substrates (~ 0.5 cm × 0.5 cm in size) were placed in the downstream area 

(~ 11 cm - 15 cm from the precursor material). Before heating, the tube was vacuumed by the pump and 

purged with ultra-high-purity Ar carrier gas flow (100 sccm) for 10 mins to remove any air residue in the 

tube. Next, the CVD system works according to the designed growth conditions. For example, to obtain the 

largest SnSe NPs, the furnace was heated to 612 °C at a ramp speed of 25 °C/min without Ar carrier gas 

flow, after which the furnace was maintained at 612 °C for 48 mins with 88 sccm Ar gas flow under 4.9 

Torr pressure to grow SnSe NPs. Once the reaction finished, the furnace was naturally cooled down to room 

temperature without Ar gas flow.

Machine learning algorithm

1. Gaussian Process Regression (GPR)

GPR is a non-parametric, probabilistic regression technique that leverages Gaussian processes to model the 

relationships between input variables and a continuous output variable. In GPR, a Gaussian process is used 

to define a distribution over functions. This allows the model to represent a range of possible functions that 

could describe the data. Suppose  is the input vector,  is the regression function, the mean and 𝑥 𝑓(𝑥)

covariance of  is described as Equation (1) and (2), respectively:𝑓(𝑥)

𝐸(𝑓(𝑥)) = 𝑚(𝑥)#(1)

𝐶𝑜𝑣[𝑓(𝑥),𝑓(𝑥')] = 𝐸{[𝑓(𝑥) ‒ 𝑚(𝑥)][𝑓(𝑥') ‒ 𝑚(𝑥')]} = 𝑘(𝑥,𝑥')#(2)

then the Gaussian Process is written as:

𝑓(𝑥)~𝐺𝑃(𝑚(𝑥), 𝑘(𝑥,𝑥'))#(3)

The GPR model with Gaussian noise can be formulated as follows:

𝑦 = 𝑓(𝑥) + 𝜀#(4)

where y is the prediction,  is the noisy or mismatch values that is assumed to follow the Gaussian 𝜀

distribution . Therefore, a GPR model is a probabilistic model in which a latent variable is (𝜀~𝑁(0,𝜎2
𝑛))
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introduced for each observation, contributing to its nonparametric nature. The illustration GPR is given in 

Fig. S1.

Fig. S1 Illustration of a GPR.

2. Support vector regression (SVR)

SVR is a classic implementation of support vector machines in regression problems. It operates on the 

principle of finding a hyperplane in a high-dimensional space that best fits the training data within a 

predefined margin of tolerance. Suppose a dataset of n points is given as:

{(𝑥1,𝑦1),…, (𝑥𝑖,𝑦𝑖)}#(5)

where  is a real input feature vector and  is the regression value. The regression function can be 𝑥𝑖 𝑦𝑖

described as：

𝑓(𝑥) = 𝑤 ∙ 𝜑(𝑥) + 𝑏#(6)

where  is the weight factor,  is the mapping function of inputs in high dimensional space and  is 𝑤 𝜑(𝑥) 𝑏

the bias. If the deviation between  and  is less than  (the largest tolerance error), then the  is 𝑦𝑖 𝑓(𝑥𝑖) 𝜀 𝑓(𝑥𝑖)

said to be found. Thus, a function  is desired that has most  deviation from , while being as flat as 𝑓(𝑥) 𝜀 𝑦𝑖

possible. An ε-insensitive loss function is introduced to describe the degree of deviation:

𝐿(𝑥,𝑦,𝑓) = { |𝑦𝑖 ‒ 𝑓(𝑥𝑖)| ‒ 𝜀       𝑖𝑓 |𝑦𝑖 ‒ 𝑓(𝑥𝑖)| ≥ 𝜀  
              0                           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒        �#(7)

This function indicates that training points will not be penalized if they are within the -tube range. In order 𝜀

to achieve the flatness of the desired regressor, the square of the norm of  should be minimized. The 𝑤

problem is described as follows: 
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𝑚𝑖𝑛𝑅(𝑤) =
1
2

‖𝑤‖2 +
𝑛

∑
𝑖 = 1

𝐿(𝑥,𝑦,𝑓)#(8)

Slack variables  and  are introduced to cope with infeasible constraints. The above problem can be 𝛿𝑖 𝛿 ∗
𝑖

formulated into the following optimization function:

min 𝑅(𝑤) =  
1
2

‖𝑤‖2 + 𝐶
𝑛

∑
𝑖 = 1

(𝜉𝑖 + 𝜉 ∗
𝑖 )

𝑠.𝑡. { 𝑦𝑖 ‒ 𝑓(𝑥𝑖) ≤ 𝜀 + 𝜉𝑖
𝑓(𝑥𝑖) ‒ 𝑦𝑖 ≤ 𝜀 + 𝜉 ∗

𝑖
𝜉𝑖,𝜉𝑖 ≥ 0  �#(9)

where C is the penalty parameter to determine the trade-off between the flatness of  and the amount up 𝑓(𝑥)

to which deviations larger than ε are tolerated. Fig. S2 depicts the basic principle of non-linear SVR to 

address problems with constraints, Lagrange multipliers can be used as follows:

𝐿 : =  
1
2

‖𝑤‖2 + 𝐶
𝑛

∑
𝑖 = 1

(𝜉𝑖 + 𝜉 ∗
𝑖 ) ‒

𝑛

∑
𝑖 = 1

(𝜂𝑖𝜉𝑖 + 𝜂 ∗
𝑖 𝜉 ∗

𝑖 )

‒
𝑛

∑
𝑖 = 1

𝛼𝑖(𝜀 + 𝜉𝑖 ‒ 𝑦𝑖 + 𝑤 ∙ 𝜑(𝑥𝑖) + 𝑏) ‒
𝑛

∑
𝑖 = 1

𝛼 ∗
𝑖 (𝜀 + 𝜉 ∗

𝑖 + 𝑦𝑖 ‒ 𝑤 ∙ 𝜑(𝑥𝑖) ‒ 𝑏)#(10)

where  is the Lagrangian, , , , and  are Lagrange multipliers. When the 𝐿 𝛼𝑖 ≥ 0 𝛼 ∗
𝑖 ≥ 0 𝜂𝑖 ≥ 0 𝜂 ∗

𝑖 ≥ 0

constraint functions have strong duality, and the objective function is differentiable, Karush-Kuhn-Tucker 

conditions must be satisfied for each pair of the primal and dual optimal points as follows:

{ 𝛼𝑖(𝜀 + 𝜉𝑖 ‒ 𝑦𝑖 + 𝑤 ∙ 𝜑(𝑥𝑖) + 𝑏) = 0

𝛼 ∗
𝑖 (𝜀 + 𝜉 ∗

𝑖 + 𝑦𝑖 ‒ 𝑤 ∙ 𝜑(𝑥𝑖) ‒ 𝑏) = 0
(𝐶 ‒ 𝛼𝑖)𝜉𝑖 = 0

(𝐶 ‒ 𝛼 ∗
𝑖 )𝜉 ∗

𝑖 = 0
�

By solving the above equations, the Lagrange dual problem can be derived as follows:

𝑚𝑎𝑥( ‒
1
2

𝑛

∑
𝑖,𝑗 = 1

(𝛼𝑖 ‒ 𝛼 ∗
𝑖 )(𝛼𝑗 ‒ 𝛼 ∗

𝑗 )𝑥𝑇
𝑖 𝑥𝑗 ‒ 𝜀

𝑛

∑
𝑖 = 1

(𝛼𝑖 + 𝛼 ∗
𝑖 ) +

𝑛

∑
𝑖 = 1

𝑦𝑖(𝛼𝑖 ‒ 𝛼 ∗
𝑖 ))

𝑠.𝑡. 
𝑛

∑
𝑖 = 1

(𝛼𝑖 ‒ 𝛼 ∗
𝑖 ) = 0, 𝑎𝑛𝑑 𝛼𝑖,𝛼

∗
𝑖 ∈ [0,𝐶]#(11)
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The weight vector can be obtained as , and therefore the regression function is:
 𝑤 =

𝑛

∑
𝑖 = 1

(𝛼𝑖 ‒ 𝛼 ∗
𝑖 )𝜑(𝑥𝑖)

𝑓(𝑥) =
𝑛

∑
𝑖 = 1

(𝛼𝑖 ‒ 𝛼 ∗
𝑖 )𝜑(𝑥𝑖)𝑥 + 𝑏#(12)

Fig. S2 Example of an SVR with an e-tube.

3. Regression tree (RT)

The construction of a RT involves recursively splitting the data based on the input features to minimize the 

variance of output variables within each split. The process starts at the root of the tree and divides the data 

into two subsets using the feature and threshold that result in the largest variance reduction. This division 

process repeats until a predefined stopping criterion is met. Fig. S3 depicts an example of RT method by 

giving two input variables, X and Y, for a regression task. This splitting continues in a recursive manner 

on each subset until a stopping criterion is met, which could be a minimum number of observations in a 

node, a maximum tree depth, or a minimum improvement in variance reduction.

Fig. S3 Example of an RT.
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4. Random forest (RF)

RF regression is an ensemble learning method that operates by constructing multiple RTs in the training 

process and the final output is the mean prediction of the individual trees. It extends the concept of a single 

RT to a forest of trees, aiming to reduce the variance and improve the accuracy of predictions for continuous 

target variables by referring to a bagging method, thereby overcoming some of the limitations of individual 

RT, such as overfitting. Assume that n samples are randomly collected from Sn with a selective probability 

of 1/n for each sample. These randomly selected n samples are called a bootstrap sample , where  is an 𝜃 𝜃

independently distributed vector. Assume that q bootstrap samples ( ,…, ) are selected and trained,  𝑆
𝜃1
𝑛   𝑆

𝜃𝑞
𝑛

then q RTs generate q outputs ( ,…, ). The values of the q outputs are then averaged to obtain the final �̂�1 �̂�𝑞

output. The construction of RF is illustrated in Fig. S4. 

Fig. S4 Construction of an RF.

The BO process with five-fold CV:

Before model training, the dataset is randomly split into a training set containing 80% of data and a test set 

containing 20% of data. The training set was further split into five distinct subsets, with each subset serving 

as the validation subset in a different fold. In each iteration, the BO algorithm selected a new set of 

hyperparameters based on the prior knowledge. The ML model was trained based on four training subsets; 
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the loss was then computed on the corresponding validation subset to assess the model performance. After 

completing a 5-fold CV, the five sets of obtained loss values were averaged to get the final CV loss for that 

iteration. The goal of BO is to find the optimal combination of hyperparameters with minimum CV loss. 

The illustration diagram of ML model dataset partitioning used in this work is given in Fig. S5.

Fig. S5 The illustration diagram of five-fold cross-validation.

Table S1 Performance statistics of different models for SnSe SL prediction.
R2 RMSE MAEPerformance 

parameters training test training test training test

GPR 0.997 0.996 0.403 0.516 0.256 0.296

SVR 0.874 0.894 2.598 2.699 1.995 1.977

RT 0.971 0.943 1.251 1.981 0.935 1.4

RF 0.967 0.964 1.328 1.561 0.998 1.304
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Fig. S6 The estimated error distributions between the predicted and actual SnSe NP SLs 

based on different ML models: (a) GPR model; (b) SVR model; (c) RT model and (d) RF 

model.

Characterization equipment 

The surface morphology of the grown SnSe NPs was characterized with a SEM (FEI Verios 

460 L). The chemical element composition of the grown SnSe NPs was analysed with micro-

Raman spectroscopy (WITec alpha 300RA+) and EDX spectroscopy (Oxford Instruments X-

Max 80 EDX system). The crystallographic information with atomic resolution of the grown 

SnSe NPs was confirmed with a HRTEM (FEI Titan G2 80-200 TEM/STEM) equipped with 

SAED, while a dual beam FIB-SEM system (FEI Helios NanoLab G3 CX) was used to prepare 

TEM specimens.


