Supplementary Information (SI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2024

Supporting Information

Achieving high ionic conductivity of LATP solid electrolyte via LiTFSI-assisted cold sintering process

Shanshan Yi,^a† Shuyu Zhou,^{a,b}† Yudong Liu,^a PengPeng Dai,^a Yuxin Liu,^a Shixi Zhao^{*a} and Guozhong Cao^{*c}

^{b.} School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China.

^{a.} Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.

^c Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195 (USA).

[†] Shanshan Yi and Shuyu Zhou contributed equally to this work.

Fig. S1. SEM image and grain size distribution of CSH-LATP-xLiTFSI(650). (a,f,k): x=0; (b,g,l): x=0.05; (c,h,m): x=0.1; (d,i,n): x=0.15; (e,j,o): x=0.2.

Fig. S2 EIS results of (a) CSH-LATP(650) and (b) CSH-LATP-0.1LiTFSI(650) at different temperature.

Fig. S3 digital images of (a) CSH-LATP(650) and (b) CSH-LATP-0.1LiTFSI(650).

Fig. S4 Relative density of LATP pellets at different experiment condition and the digital images of H-LATP(650) at bottom right.

Figure S5 The SEM images of the cross section of CS-LATP-0.1LiTFSI.

Fig. S6 The SEM images of the cross section of CSH-LATP-0.1LiTFSI(900).

Fig. S7 (a,b) The SEM images of the cross section of H-LATP(850). (c) EIS results of H-LATP(850) at room temperature.

Fig. S8 Electron diffraction pattern of (a) area A, (b) area B, (c) area C and (d) area D of Fig. 4a.

Fig. S10 Rietveld refined XRD pattern of LATP powder.

Fig. S11 Enlarged views of (a) (113) and (b) (024) diffraction peaks.

Sample	Temperature of cold sintering	H-IT/GPa	HV	E-IT/GPa
CSH-LATP(650)	130	0.357	33.0	36.18
CSH-LATP-0.1LiTFSI(650)	130	2.286	211.8	80.17
CSH-LATP-0.1LiTFSI(650)	200	5.041	466.9	114.72
H-LATP(900)	/	5.133	475.4	115.00

Table S1 The hardness test results of LATP pellets at different experiment condition

Table S2 Rietveld fitting results of LATP and CSH-LATP-0.1LiTFSI(650) electrolyte samples.

Sample	space group	a=b (Å)	c (Å)	α= β (°)	γ(°)	$V(Å^3)$	R _w
LATP	R-3C	8.49916	20.79765	90	120	1301.059	7.64
CSH-LATP- 0.1LiTFSI	R-3C	8.49101	20.89296	90	120	1304.517	11.7

Table S3 Crystallographic data of LATP and CSH-LATP-0.1LiTFSI	(650) electrol	yte sam	ples.
---	------	------------	---------	-------

Sample	Atom	Site	Х	У	Z	Occupancy
LATP	Li	6b	0	0	0	1.1277
	Al	12c	0	0	0.14128	0.15
	Ti	12c	0	0	0.14128	0.8126
	Р	18e	0.28952	0	0.25	1
	01	36f	0.18539	0.98977	0.19037	1
	02	36f	0.18245	0.15861	0.08133	1
CSH-LATP-0.1LiTFSI(650)	Li	6b	0	0	0	1.2691
	Al	12c	0	0	0.14131	0.15
	Ti	12c	0	0	0.14131	0.8362
	Р	18e	0.28830	0	0.25	1
	01	36f	0.18231	0.99103	0.18898	1
	02	36f	0.18750	0.16430	0.08169	1

Table S4 Comparison of the electrochemical performance using Li anode and LiFePO $_4$ cathdoe
and relative density and ionic conductivity of CSH-LATP-0.1LiTFSI(650) with other reported
works.

Ref.	Ionic conductivity at RT (S cm ⁻¹)	Sintering parameters	Initial discharge capacity (mAh g ⁻¹)	Capacity decay rate per cycle
[1]	8.73×10 ⁻⁴	900°C-6h	149.7	5.19% at 1C
[2]	4.74×10 ⁻⁴	900°C-12h	157.6	4.92% at 0.1C
[3]	1.15×10 ⁻⁴	/	154.7	5.75% at 0.2C
[4]	6.46×10 ⁻⁴	/	139.72	7.24% at 0.5C
[5]	/	800°C-6h	130.1	4.8% at 0.5C
[6]	1.06×10 ⁻³	/	164	6.83% at 0.2C
[7]	/	900°C-10h	166.3	10.32% at 0.4C
[8]	1.13×10 ⁻⁴	800°C-2h	119.4	9.5% at 0.5C
This work: CSH-LATP- 0.1LiTFSI(650)	7.85×10 ⁻⁴	650°C -2h	149.7	4.17% at 0.5C

References

- 1. Huang, C.; Huang, S.; Wang, A.; Liu, Z.; Pei, D.; Hong, J.; Hou, S.; Vitos, L. and Jin, H. *J. Mater. Chem. A*, **2022**, *10*, 25500.
- 2. Wang, Y.; Wang, L.; Shi, Q.; Zhong, C.; Gong, D.; Wang, X.; Zhan, C. and Liu, G. *J. Energy Chem.* **2023**, *80*, 89-98.
- 3. Rong, Y.; Lu, Z.; Jin, C.; Xu, Y.; Peng, L.; Shi, R.; Gu, T.; Lu, C. and Yang, R. *ACS Sustainable Chem. Eng.* **2023**, *11*, 785-795.
- 4. Kibret, D.; Mengesha, T.; Walle, K.; Wu, Y.; Chang, J.; Jose, R. and Yang, C. *J. Energy Storage* **2024**, *94*, 112523.
- Luo, L.; Zheng, F.; Gao, H.; Lan, C.; Sun, Z.; Huang, W.; Han, X.; Zhang, Z.; Su, P.; Wang, P.; Guo, S.; Lin, G.; Xu, J.; Wang, J.; Li, J.; Li, C.; Zhang, Q.; Wu, S.; Wang, M. and Chen, S. *Nano Res.* 2023, *16(1)*: 1634-1641.
- 6. Cho, Y.; Mong, A.; Hoang, H. and Kim, D. J. Energy Storage 2024, 92, 112295.
- 7. Lei, M.; Fan, S.; Yu, Y.; Hu, J.; Chen, K.; Gu, Y.; Wu, C.; Zhang, Y. and Li, C. *Energy Storage Mater.* **2022**, *47*, 551-560.
- Tran, H.; Wu, Y.; Chien, W.; Wu, S.; Jose, R.; Lue, S. and Yang, C. ACS Appl. Energy Mater. 2020, 3, 11024-11035.