Comprehensive Overview of Machine Learning Application in MOFs: From Modeling Processes to Latest Applications and Design Classifications

Yutong Liu, Yawen Dong, Hua Wu*

Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China

* corresponding authors

E-mail: wuhua@njau.edu.cn

13 pages

Contains 5 tables.

Contents

Table S1. Summary of data sources.

Table S2. Summary of commonly used material databases.

Table S3. Summary of common material descriptors.

Table S4. Three mainstream Cross Validation (CV) methods.

Table S5. The application of MOFs combined with ML in the adsorption and separation of various gases.

References

Table S1. Summary of data sources.

Sources	Descriptions	Advantages	Disadvantages	Future trend
Experiment	The scientific study of synthesizing specific MOFs by manually adjusting various experimental parameters.	Because reliable data cannot be obtained, synthetic experiments under certain conditions cannot be replaced by computational methods.	Experiment is costly and time- consuming, and the sensitivity of MOFs to the synthesis conditions will lead to the deviation of the results.	High-throughput experimental (HTE) + Machine Learning (ML)
Literature	Searchable written information that has been published in a journal or book.	A large amount of experimental information to be used is stored.	Provided as text, manual extraction of information is time-consuming, laborious and error-prone.	Natural Language Pprocessing (NLP) and Large Language Models (LLM)
Database	A publicly available or paid collection of crystal structures data.	A plenty of data and a variety of structural parameters are contained.	There are many sources, disordered relationships and poor universality.	Standardize data format, enhance its universality and systematicness.
Calculation	According to the existing data and combined with mathematics, physics and chemistry knowledge to expand the data.	Computational data sources are more readily available and apply to target attributes that lack sufficient data.	Some data are unreasonable and lack of experimental verification, which will interfere with the results of material development.	High-Throughput Computational Screening $(HTCS) + Machine$ Learning (ML)

Database	Number	Year	Descriptions	URL	
Inorganic Crystal		1913	The largest database in the world for totally	https://psds.ac. uk/icsd	
Structure	over 240,000		identified inorganic crystal structures,		
Database (ICSD)			provided by FIZ Karlsruhe GmbH.[1-3]		
Cambridge	over	1965	A database of over 1,000,000 small-molecule	https://psds.ac. uk/csd	
Structure			organic and organometallic crystal structures,		
Database (CSD)	1,000,000		including $69,666$ MOFs. ^[4, 5]		
Crystallography			An available collection of crystal structures of	http://crystallog	
Open Database	500,000	2003	organic, inorganic, metal-organic compounds	raphy.net/cod/b	
(COD)			and minerals, excluding biopolymers.	rowse.html	
	154,718	2011	A core program of the Materials Genome	https://next- gen.materialspr oject.org/	
			Initiative that reveals the properties of all		
Materials Project			known inorganic materials using high-		
			throughput computing.[6]		
		2012	A globally available database of 3,530,330	http://www.afl owlib.org/	
Automatic Flow	3,530,330		material compounds with over 734,308,640		
(AFLOW)			calculated properties, and growing.[7]		
Hypothetical			A crystal structure database for screening		
MOFs Database	137,953	2012	hypothetical MOFs by large-scale assembly	http://hmofs.no	
(hMOFs)			of metal clusters and organic ligands. ^[8]	rthwestern.edu	
	5,109	2014	A collection of MOF structures derived from		
Computation-			experimental data which can be immediately		
Ready,			applied to molecular simulation. ^[9]	https://zenodo.	
Experimental	14,142	2019	A part of an update to the CoRE MOF 2014	org/records/769	
MOFs Database			Database including over 14 000 porous, three-	1378	
(CoRE)			dimensional MOF structures.[10]		
The Open		2015	An Open-access database of DFT calculated	https://www.oq	
Quantum	1,022,603		thermodynamic and structural properties for	md.org/	

Table S2. Summary of commonly used material databases.

Table S3. Summary of common material descriptors.

crystal structure electrostatic potential-derived charge (ESPC) cohesive energies voronoi energies electronic band structure density of states heat of adsorption $(\Delta_{ads}H)$ working capacity (ΔW) energy efficiency isosteric heat (Q_{st}) Henry coefficient (K_H) effective point charge (EPoCh)^[15] potential energy surface (PES)

Energy descriptor

Gas type	ML Algorithms	References		
	Decision Tree (DT), Random Forest (RF), Support Vector			
Methane (CH_4)	Machine (SVM), Poisson regression, Neural Network	$[18-27]$		
	(NN), Unsupervised Transfer learning (TL), etc.			
	SVM, DT, RF, NN, Gradient Boosting Machines (GBM)			
Carbon Dioxide $(CO2)$	Multiple Linear Regression (MLR), etc.	$[28-36]$		
CO ₂ /CH ₄	DT, SVM.	$[37]$		
	DT, RF, Support Vector Regression (SVR), Linear			
Hydrogen $(H2)$	Regression (LR), K-NearesNeighbor (KNN), Gradient	$[38-40]$		
	Boosting Regression (GBR), etc.			
CO ₂ /H ₂	Gradient Boosted Regression Tree (GBRT)	$[41]$		
Nitrogen (N_2)	K-means clustering	$[42]$		
O_2/N_2	RF, GBRT, and Extreme Gradient Boosting (XGB).	$[43]$		
Xenon / Krypton	MOF-NET and Multi-Species Genetic Algorithm			
(Xe/Kr)	$(MSGA)$ ^[44]	$[45]$		
Ethane / Ethylene	RF, LR, DT, SVM, kNN, GBM, etc.	$[46-48]$		
Propane / Propylene	RF, DT, etc.	$[49-52]$		
	LASSO, Elastic Net, SVM, XGBoost, Ridge Regression			
Isobutene / Isobutane	(RR), Bayes Regression (BR), and Artificial Neural	$[53]$		
	Network (ANN).			
	DT, SVM, Gradient Boosting Decision Tree (GBDT), and			
Acetylene	Back Propagation Neural Network (BPNN).	$[54]$		
High-sour natural gas	BPNN and the Partial Least-Square (PLS)	$[55]$		
	XGB, GBRT, Multi-layer perceptron (MLP), and the			
$H_2S / CO_2 / CH_4$	model obtained from the Tree-based Pipeline	[56]		
	Optimisation Tool (TPOT).			

Table S5. The application of MOFs combined with ML in the adsorption and separation of various gases.

References

- [1] D. Zagorac, H. Mueller, S. Ruehl, J. Zagorac, S. Rehme, *J. Appl. Crystallogr.* **2019**, *52*, 918.
- [2] G. Bergerhoff, R. Hundt, R. Sievers, I. D. Brown, *J. Chem. Inf. Comput. Sci.* **1983**, *23*, 66.
- [3] A. Belsky, M. Hellenbrandt, V. L. Karen, P. Luksch, *Acta Crystallogr B* **2002**, *58*, 364.
- [4] P. Z. Moghadam, A. Li, S. B. Wiggin, A. Tao, A. G. P. Maloney, P. A. Wood, S. C. Ward, D. Fairen-Jimenez, *Chem. Mater.* **2017**, *29*, 2618.
- [5] C. R. Groom, F. H. Allen, *Angew Chem Int Edit* **2014**, *53*, 662.
- [6] A. Jain, O. Shyue Ping, G. Hautier, W. Chen, W. D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, K. A. Persson, *Apl Mater.* **2013**, *1*, 011002.
- [7] S. Curtarolo, W. Setyawan, S. Wang, J. Xue, K. Yang, R. H. Taylor, L. J. Nelson, G. L. W. Hart, S. Sanvito, M. Buongiorno-Nardelli, N. Mingo, O. Levy, *Comput. Mater. Sci.* **2012**, *58*, 227.
- [8] C. E. Wilmer, M. Leaf, C. Y. Lee, O. K. Farha, B. G. Hauser, J. T. Hupp, R. Q. Snurr, *Nat. Chem.* **2012**, *4*, 83.
- [9] Y. G. Chung, J. Camp, M. Haranczyk, B. J. Sikora, W. Bury, V. Krungleviciute, T. Yildirim, O. K. Farha, D. S. Sholl, R. Q. Snurr, *Chem. Mater.* **2014**, *26*, 6185.
- [10] Y. G. Chung, E. Haldoupis, B. J. Bucior, M. Haranczyk, S. Lee, H. Zhang, K. D. Vogiatzis, M. Milisavljevic, S. Ling, J. S. Camp, B. Slater, J. I. Siepmann, D. S. Sholl, R. Q. Snurr, *J. Chem. Eng. Data* **2019**, *64*, 5985.
- [11] S. Kirklin, J. E. Saal, B. Meredig, A. Thompson, J. W. Doak, M. Aykol, S. Ruehl, C. Wolverton, *npj Comput. Mater.* **2015**, *1*, 15010.
- [12] A. S. Rosen, S. M. Iyer, D. Ray, Z. Yao, A. Aspuru-Guzik, L. Gagliardi, J. M. Notestein, R.

Q. Snurr, *Matter* **2021**, *4*, 1578.

- [13] N. S. Bobbitt, K. Shi, B. J. Bucior, H. Chen, N. Tracy-Amoroso, Z. Li, Y. Sun, J. H. Merlin, J. I. Siepmann, D. W. Siderius, R. Q. Snurr, *J. Chem. Eng. Data* **2023**, *68*, 483.
- [14] J. Burner, J. Luo, A. White, A. Mirmiran, O. Kwon, P. G. Boyd, S. Maley, M. Gibaldi, S. Simrod, V. Ogden, T. K. Woo, *Chem. Mater.* **2023**, *35*, 900.
- [15] I. B. Orhan, T. C. Le, R. Babarao, A. W. Thornton, *Commun. Chem.* **2023**, *6*, 214.
- [16] Q. Li, Int. J. Comput. Ass. Rad. **2006**, *1*, 347.
- [17] J. Zhang, S. Wang, *Neural Comput. Appl.* **2016**, *27*, 1717.
- [18] R. Wang, Y. Zhong, L. Bi, M. Yang, D. Xu, *Acs Appl. Mater. Interfaces* **2020**, *12*, 52797.
- [19] R. Gurnani, Z. Yu, C. Kim, D. S. Sholl, R. Ramprasad, *Chem. Mater.* **2021**, *33*, 3543.
- [20] X. Wei, Z. Lu, Y. Ai, L. Shen, M. Wei, X. Wang, *Sep. Purif. Technol.* **2024**, *330*, 125291.
- [21] X. Wu, Z. Cao, X. Lu, W. Cai, *Chem. Eng. J.* **2023**, *459*, 141612.
- [22] R. Wang, Y. Zou, C. Zhang, X. Wang, M. Yang, D. Xu, *Microporous Mesoporous Mater.* **2022**, *331*, 111666.
- [23] M. Suyetin, Faraday Discuss. **2021**, *231*, 224.
- [24] S. Y. Kim, S. I. Kim, Y. S. Bae, *J. Phys. Chem. C* **2020**, *124*, 19538.
- [25] Z. Gulsoy, K. B. Sezginel, A. Uzun, S. Keskin, R. Yildirim, *Acs Comb. Sci.* **2019**, *21*, 257.
- [26] G. S. Fanourgakis, K. Gkagkas, E. Tylianakis, E. Klontzas, G. Froudakis, *J. Phys. Chem. A* **2019**, *123*, 6080.
- [27] M. Pardakhti, E. Moharreri, D. Wanik, S. L. Suib, R. Srivastava, *Acs Comb. Sci.* **2017**, *19*, 640.
- [28] B. Zheng, F. L. Oliveira, R. N. B. Ferreira, M. Steiner, H. Hamann, G. X. Gu, B. Luan, *Acs Nano* **2023**, *17*, 5579.
- [29] S. Kancharlapalli, R. Q. Snurr, *Acs Appl. Mater. Interfaces* **2023**, *15*, 28084.
- [30] Z. Zhang, X. Cao, C. Geng, Y. Sun, Y. He, Z. Qiao, C. Zhong, *J. Membr. Sci.* **2022**, *650*, 120399.
- [31] Z. Sun, Y. Liao, S. Zhao, X. Zhang, Q. Liu, X. Shi, *J. Mater. Chem. A* **2022**, *10*, 5174.
- [32] K. Choudhary, T. Yildirim, D. W. Siderius, A. G. Kusne, A. Mcdannald, D. L. Ortiz-Montalvo, *Comput. Mater. Sci.* **2022**, *210*, 111388.
- [33] M. N. Amar, H. Ouaer, M. A. Ghriga, *Fuel* **2022**, *311*, 122545.
- [34] X. Deng, W. Yang, S. Li, H. Liang, Z. Shi, Z. Qiao, *Appl. Sci.-Basel* **2020**, *10*, 569.
- [35] T. D. Burns, K. N. Pai, S. G. Subraveti, S. P. Collins, M. Krykunov, A. Rajendran, T. K. Woo, *Environ. Sci. Technol.* **2020**, *54*, 4536.
- [36] R. Anderson, J. Rodgers, E. Argueta, A. Biong, D. A. Gomez-Gualdron, *Chem. Mater.* **2018**, *30*, 6325.
- [37] M. Z. Aghaji, M. Fernandez, P. G. Boyd, T. D. Daff, T. K. Woo, *Eur. J. Inorg. Chem.* **2016**, 4505.
- [38] J. Park, Y. Lim, S. Lee, J. Kim, *Chem. Mater.* **2023**, *35*, 9.
- [39] K. Salehi, M. Rahmani, S. Atashrouz, *Int. J. Hydrogen Energy* **2023**, *48*, 33260.
- [40] X. Zhang, Q. R. Zheng, H. Z. He, *J. Taiwan Inst. Chem. Eng.* **2022**, *138*, 104479.
- [41] H. Dureckova, M. Krykunov, M. Z. Aghaji, T. K. Woo, *J. Phys. Chem. C* **2019**, *123*, 4133.
- [42] M. Fernandez, A. S. Barnard, *Acs Comb. Sci.* **2016**, *18*, 243.
- [43] Y. Yan, Z. Shi, H. Li, L. Li, X. Yang, S. Li, H. Liang, Z. Qiao, *Chem. Eng. J.* **2022**, *427*, 131604.
- [44] S. Lee, B. Kim, H. Cho, H. Lee, S. Y. Lee, E. S. Cho, J. Kim, *Acs Appl. Mater. Interfaces* **2021**, *13*, 23647.
- [45] Y. Lim, J. Park, S. Lee, J. Kim, *J. Mater. Chem. A* **2021**, *9*, 21175.
- [46] P. Halder, J. K. Singh, *Energy Fuels* **2020**, *34*, 14591.
- [47] Z. Wang, T. Zhou, K. Sundmacher, Chem. Eng. J. **2022**, *444*, 136651.
- [48] Y. Wu, H. Duan, H. Xi, Chem. Mater. **2020**, *32*, 2986.
- [49] V. Daoo, J. K. Singh, Acs Appl. Mater. Interfaces **2024**, *16*, 6971.
- [50] H. Tang, Q. Xu, M. Wang, J. Jiang, *Acs Appl. Mater. Interfaces* **2021**, *13*, 53454.
- [51] Y. Wang, Z.-J. Jiang, D.-R. Wang, W. Lu, D. Li, *J. Am. Chem. Soc.* **2024**, *146*, 6955.
- [52] X. Xue, M. Cheng, S. Wang, S. Chen, L. Zhou, C. Liu, X. Ji, *Ind. Eng. Chem. Res.* **2023**, *62*, 1073.
- [53] X. Sun, W. Lin, K. Jiang, H. Liang, G. Chen, *Phys. Chem. Chem. Phys.* **2023**, *25*, 8608.
- [54] P. Yang, G. Lu, Q. Yang, L. Liu, X. Lai, D. Yu, *Green Energy Environ.* **2022**, *7*, 1062.
- [55] H. Liang, W. Yang, F. Peng, Z. Liu, J. Liu, Z. Qiao, *Apl Mater.* **2019**, *7*, 091101.
- [56] W. Gao, W. Zheng, K. Yan, W. Sun, L. Zhao, *Fuel* **2023**, *350*, 128757.