Comprehensive Overview of Machine Learning Application in MOFs: From Modeling Processes to Latest Applications and Design Classifications

Yutong Liu, Yawen Dong, Hua Wu*

Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China

* corresponding authors

E-mail: wuhua@njau.edu.cn

13 pages

Contains 5 tables.

Contents

Table S1. Summary of data sources.

Table S2. Summary of commonly used material databases.

Table S3. Summary of common material descriptors.

Table S4. Three mainstream Cross Validation (CV) methods.

Table S5. The application of MOFs combined with ML in the adsorption and separation of various gases.

References

 Table S1. Summary of data sources.

Sources	Descriptions	Advantages	Disadvantages	Future trend
Experiment	The scientific study of synthesizing specific MOFs by	Because reliable data cannot be obtained, synthetic experiments under	Experiment is costly and time- consuming, and the sensitivity of MOFs	High-throughput
	manually adjusting various experimental parameters.	certain conditions cannot be replaced by computational methods.	to the synthesis conditions will lead to the deviation of the results.	Machine Learning (ML)
Literature	Searchable written information that has been published in a journal or book.	A large amount of experimental information to be used is stored.	Provided as text, manual extraction of information is time-consuming, laborious and error-prone.	Natural Language Pprocessing (NLP) and Large Language Models (LLM)
Database	A publicly available or paid collection of crystal structures data.	A plenty of data and a variety of structural parameters are contained.	There are many sources, disordered relationships and poor universality.	Standardize data format, enhance its universality and systematicness.
Calculation	According to the existing data and combined with mathematics, physics and chemistry knowledge to expand the data.	Computational data sources are more readily available and apply to target attributes that lack sufficient data.	Some data are unreasonable and lack of experimental verification, which will interfere with the results of material development.	High-Throughput Computational Screening (HTCS) + Machine Learning (ML)

Database	Number	Year	Descriptions	URL	
Inorganic Crystal			The largest database in the world for totally	1	
Structure	over	1913	identified inorganic crystal structures,	https://psds.ac.	
Database (ICSD)	(ICSD)		provided by FIZ Karlsruhe GmbH. ^[1-3]		
Cambridge	over		A database of over 1,000,000 small-molecule	https://psds.ac	
Structure	1 000 000	1965 00,000	organic and organometallic crystal structures,	<u>intps://psds.ac.</u>	
Database (CSD)	1,000,000		including 69,666 MOFs. ^[4, 5]	<u>uk/csd</u>	
Crystallography			An available collection of crystal structures of	http://crystallog	
Open Database	500,000	2003	organic, inorganic, metal-organic compounds	raphy.net/cod/b	
(COD)			and minerals, excluding biopolymers.	rowse.html	
			A core program of the Materials Genome	letter ou //ee ourt	
		2011	Initiative that reveals the properties of all	https://next-	
Materials Project	154,718		known inorganic materials using high-	gen.materialspr	
			throughput computing. ^[6]	oject.org/	
Automatic Flow			A globally available database of 3,530,330	http://www.ofl	
Automatic Flow	3,530,330	2012	material compounds with over 734,308,640	<u>nttp://www.all</u>	
(AFLOW)			calculated properties, and growing. ^[7]	<u>owlib.org/</u>	
Hypothetical		2012	A crystal structure database for screening	http://humofa.co.	
MOFs Database	137,953		hypothetical MOFs by large-scale assembly	<u>nttp://nmois.no</u>	
(hMOFs)			of metal clusters and organic ligands. ^[8]	<u>rthwestern.edu</u>	
			A collection of MOF structures derived from		
Computation-	5,109	2014	experimental data which can be immediately		
Ready,			applied to molecular simulation. ^[9]	https://zenodo.	
Experimental			A part of an update to the CoRE MOF 2014	org/records/769	
MOFs Database	14,142	2019	Database including over 14 000 porous, three-	<u>1378</u>	
(CoRE)			dimensional MOF structures. ^[10]		
The Open	he Open		An Open-access database of DFT calculated	https://www.oq	
1,022,603 Quantum		2015	thermodynamic and structural properties for	md.org/	

Table S2. Summary of commonly used material databases.

Materials	more than 1 million materials, created in			
Database			Chris Wolverton's group at Northwestern	
(OQMD)			University. ^[11]	
Material Genome Engineering Databases (MGED)	710,050	2018	A database / application software integrated system platform based on material genetic engineering.	<u>https://www.m</u> gedata.cn/
Quantum MOF (QMOF)	14,482	2021	An online database of computed quantum- chemical properties for more than 14,000 experimentally synthesized MOFs. ^[12]	https://figshare. com/articles/da taset/QMOF_D atabase/131473 24
MOFX-DB	over 160,000	2023	A publicly available Database of Computational Adsorption Data for Nanoporous Materials. ^[13]	<u>https://mof.tech</u> .northwestern.e <u>du</u>
ARC-MOF	over 280,000	2023	A diverse database of MOFs with DFT- derived partial atomic charges and descriptors. ^[14]	https://doi.org/ 10.5281/zenod <u>0.6908727</u>

Categories	Descriptors	
	Pore size, dominant pore size, maximum pore size	
	Available pore volume (V _a)	
	Gravimetric surface	
	Surface area (SA), Accessible surface area (ASA), volumetric	
	surface area (VSA), gravity surface area (GSA)	
	void fraction (VF)	
Geometrical descriptor	global cavity diameter (GCD)	
	largest cavity diameter (LCD)	
	pore limiting diameter (PLD)	
	pore size distribution (PSD)	
	pore volume (PV)	
	density (p)	
	pore connectivity	
	pore morphology	
	porosity	
Topological descriptor	cavity size	
	coordination numbers	
	bond angles	
	atom-specific persistent homology (ASPH)	
	atomic type and number	
	degree of unsaturation, total unsaturation	
	electronegativity	
	atomic composition	
Chemical descriptor	electronic configurations	
	metallic percentage	
	oxygen to metal ratio (OMR)	
	nitrogen to oxygen ratio (NOR)	

 Table S3. Summary of common material descriptors.

crystal structure electrostatic potential-derived charge (ESPC) cohesive energies voronoi energies electronic band structure density of states heat of adsorption (Δ_{ads} H) working capacity (Δ W) energy efficiency isosteric heat (Q_{st}) Henry coefficient (K_H) effective point charge (EPoCh) ^[15] potential energy surface (PES)

Energy descriptor

Table S4. Three mainstream	Cross	Validation	(CV)) methods.

CV Type	Application situation	Advantages	Disadvantages
	It is common in early tasks such as decision		Only part of the data is used in the model training,
Hold-out CV	tree, naive Bayesian classifier, linear	The dataset partition is simple and easy to	and the dataset is divided only once. So the result
	regression and logistic regression.	operate.	is accidental. ^[16]
			Training is more complex and time-consuming. ^[17]
	It is suitable for small sample datasets.	All data points are utilized, so the bias is low.	And the validity of the test model changes greatly.
LOOCV			Because testing for one data point, the estimated
			value of the model is greatly affected by the data
			point.
	It is suitable for large sample datasets.	The use of data is more efficient after	
		multiple divisions, and the contingency of	Random and equal division of data is not suitable
K-CV		the results is greatly reduced, thereby	for datasets containing different categories.
		improving the accuracy of the model.	

Gas type	ML Algorithms	References	
	Decision Tree (DT), Random Forest (RF), Support Vector		
Methane (CH ₄)	Machine (SVM), Poisson regression, Neural Network	[18-27]	
	(NN), Unsupervised Transfer learning (TL), etc.		
Carbon Dioxida (CO)	SVM, DT, RF, NN, Gradient Boosting Machines (GBM)	[28 26]	
Carbon Dioxide (CO_2)	Multiple Linear Regression (MLR), etc.	[20-30]	
$\rm CO_2$ / $\rm CH_4$	DT, SVM.	[37]	
	DT, RF, Support Vector Regression (SVR), Linear		
Hydrogen (H ₂)	Regression (LR), K-NearesNeighbor (KNN), Gradient	[38-40]	
	Boosting Regression (GBR), etc.		
CO_2 / H_2	Gradient Boosted Regression Tree (GBRT)	[41]	
Nitrogen (N ₂)	K-means clustering	[42]	
O_2 / N_2	RF, GBRT, and Extreme Gradient Boosting (XGB).	[43]	
Xenon / Krypton	MOF-NET and Multi-Species Genetic Algorithm	[45]	
(Xe / Kr)	(MSGA) ^[44]		
Ethane / Ethylene	RF, LR, DT, SVM, kNN, GBM, etc.	[46-48]	
Propane / Propylene	RF, DT, etc.	[49-52]	
	LASSO, Elastic Net, SVM, XGBoost, Ridge Regression		
Isobutene / Isobutane	(RR), Bayes Regression (BR), and Artificial Neural	[53]	
	Network (ANN).		
Asstrians	DT, SVM, Gradient Boosting Decision Tree (GBDT), and	[5 4]	
Acetylene	Back Propagation Neural Network (BPNN).	[34]	
High-sour natural gas	igh-sour natural gas BPNN and the Partial Least-Square (PLS)		
	XGB, GBRT, Multi-layer perceptron (MLP), and the		
$H_2S / CO_2 / CH_4$	model obtained from the Tree-based Pipeline	[56]	
	Optimisation Tool (TPOT).		

Table S5. The application of MOFs combined with ML in the adsorption andseparation of various gases.

References

- [1] D. Zagorac, H. Mueller, S. Ruehl, J. Zagorac, S. Rehme, J. Appl. Crystallogr. 2019, 52, 918.
- [2] G. Bergerhoff, R. Hundt, R. Sievers, I. D. Brown, J. Chem. Inf. Comput. Sci. 1983, 23, 66.
- [3] A. Belsky, M. Hellenbrandt, V. L. Karen, P. Luksch, Acta Crystallogr B 2002, 58, 364.
- [4] P. Z. Moghadam, A. Li, S. B. Wiggin, A. Tao, A. G. P. Maloney, P. A. Wood, S. C. Ward, D. Fairen-Jimenez, *Chem. Mater.* 2017, 29, 2618.
- [5] C. R. Groom, F. H. Allen, Angew Chem Int Edit 2014, 53, 662.
- [6] A. Jain, O. Shyue Ping, G. Hautier, W. Chen, W. D. Richards, S. Dacek, S. Cholia, D. Gunter,D. Skinner, G. Ceder, K. A. Persson, *Apl Mater.* 2013, 1, 011002.
- S. Curtarolo, W. Setyawan, S. Wang, J. Xue, K. Yang, R. H. Taylor, L. J. Nelson, G. L. W. Hart, S. Sanvito, M. Buongiorno-Nardelli, N. Mingo, O. Levy, *Comput. Mater. Sci.* 2012, 58, 227.
- [8] C. E. Wilmer, M. Leaf, C. Y. Lee, O. K. Farha, B. G. Hauser, J. T. Hupp, R. Q. Snurr, Nat. Chem. 2012, 4, 83.
- Y. G. Chung, J. Camp, M. Haranczyk, B. J. Sikora, W. Bury, V. Krungleviciute, T. Yildirim,
 O. K. Farha, D. S. Sholl, R. Q. Snurr, *Chem. Mater.* 2014, 26, 6185.
- [10] Y. G. Chung, E. Haldoupis, B. J. Bucior, M. Haranczyk, S. Lee, H. Zhang, K. D. Vogiatzis,
 M. Milisavljevic, S. Ling, J. S. Camp, B. Slater, J. I. Siepmann, D. S. Sholl, R. Q. Snurr, J. Chem. Eng. Data 2019, 64, 5985.
- [11] S. Kirklin, J. E. Saal, B. Meredig, A. Thompson, J. W. Doak, M. Aykol, S. Ruehl, C. Wolverton, *npj Comput. Mater.* 2015, 1, 15010.
- [12] A. S. Rosen, S. M. Iyer, D. Ray, Z. Yao, A. Aspuru-Guzik, L. Gagliardi, J. M. Notestein, R.

Q. Snurr, Matter 2021, 4, 1578.

- [13] N. S. Bobbitt, K. Shi, B. J. Bucior, H. Chen, N. Tracy-Amoroso, Z. Li, Y. Sun, J. H. Merlin, J. I. Siepmann, D. W. Siderius, R. Q. Snurr, J. Chem. Eng. Data 2023, 68, 483.
- [14] J. Burner, J. Luo, A. White, A. Mirmiran, O. Kwon, P. G. Boyd, S. Maley, M. Gibaldi, S. Simrod, V. Ogden, T. K. Woo, *Chem. Mater.* 2023, 35, 900.
- [15] I. B. Orhan, T. C. Le, R. Babarao, A. W. Thornton, Commun. Chem. 2023, 6, 214.
- [16] Q. Li, Int. J. Comput. Ass. Rad. 2006, 1, 347.
- [17] J. Zhang, S. Wang, Neural Comput. Appl. 2016, 27, 1717.
- [18] R. Wang, Y. Zhong, L. Bi, M. Yang, D. Xu, Acs Appl. Mater. Interfaces 2020, 12, 52797.
- [19] R. Gurnani, Z. Yu, C. Kim, D. S. Sholl, R. Ramprasad, Chem. Mater. 2021, 33, 3543.
- [20] X. Wei, Z. Lu, Y. Ai, L. Shen, M. Wei, X. Wang, Sep. Purif. Technol. 2024, 330, 125291.
- [21] X. Wu, Z. Cao, X. Lu, W. Cai, Chem. Eng. J. 2023, 459, 141612.
- [22] R. Wang, Y. Zou, C. Zhang, X. Wang, M. Yang, D. Xu, *Microporous Mesoporous Mater*.2022, 331, 111666.
- [23] M. Suyetin, Faraday Discuss. 2021, 231, 224.
- [24] S. Y. Kim, S. I. Kim, Y. S. Bae, J. Phys. Chem. C 2020, 124, 19538.
- [25] Z. Gulsoy, K. B. Sezginel, A. Uzun, S. Keskin, R. Yildirim, Acs Comb. Sci. 2019, 21, 257.
- [26] G. S. Fanourgakis, K. Gkagkas, E. Tylianakis, E. Klontzas, G. Froudakis, J. Phys. Chem. A 2019, 123, 6080.
- [27] M. Pardakhti, E. Moharreri, D. Wanik, S. L. Suib, R. Srivastava, Acs Comb. Sci. 2017, 19, 640.

- [28] B. Zheng, F. L. Oliveira, R. N. B. Ferreira, M. Steiner, H. Hamann, G. X. Gu, B. Luan, Acs Nano 2023, 17, 5579.
- [29] S. Kancharlapalli, R. Q. Snurr, Acs Appl. Mater. Interfaces 2023, 15, 28084.
- [30] Z. Zhang, X. Cao, C. Geng, Y. Sun, Y. He, Z. Qiao, C. Zhong, J. Membr. Sci. 2022, 650, 120399.
- [31] Z. Sun, Y. Liao, S. Zhao, X. Zhang, Q. Liu, X. Shi, J. Mater. Chem. A 2022, 10, 5174.
- [32] K. Choudhary, T. Yildirim, D. W. Siderius, A. G. Kusne, A. Mcdannald, D. L. Ortiz-Montalvo, *Comput. Mater. Sci.* 2022, 210, 111388.
- [33] M. N. Amar, H. Ouaer, M. A. Ghriga, Fuel 2022, 311, 122545.
- [34] X. Deng, W. Yang, S. Li, H. Liang, Z. Shi, Z. Qiao, Appl. Sci.-Basel 2020, 10, 569.
- [35] T. D. Burns, K. N. Pai, S. G. Subraveti, S. P. Collins, M. Krykunov, A. Rajendran, T. K. Woo, *Environ. Sci. Technol.* 2020, 54, 4536.
- [36] R. Anderson, J. Rodgers, E. Argueta, A. Biong, D. A. Gomez-Gualdron, Chem. Mater. 2018, 30, 6325.
- [37] M. Z. Aghaji, M. Fernandez, P. G. Boyd, T. D. Daff, T. K. Woo, Eur. J. Inorg. Chem. 2016, 4505.
- [38] J. Park, Y. Lim, S. Lee, J. Kim, Chem. Mater. 2023, 35, 9.
- [39] K. Salehi, M. Rahmani, S. Atashrouz, Int. J. Hydrogen Energy 2023, 48, 33260.
- [40] X. Zhang, Q. R. Zheng, H. Z. He, J. Taiwan Inst. Chem. Eng. 2022, 138, 104479.
- [41] H. Dureckova, M. Krykunov, M. Z. Aghaji, T. K. Woo, J. Phys. Chem. C 2019, 123, 4133.
- [42] M. Fernandez, A. S. Barnard, Acs Comb. Sci. 2016, 18, 243.

- [43] Y. Yan, Z. Shi, H. Li, L. Li, X. Yang, S. Li, H. Liang, Z. Qiao, Chem. Eng. J. 2022, 427, 131604.
- [44] S. Lee, B. Kim, H. Cho, H. Lee, S. Y. Lee, E. S. Cho, J. Kim, Acs Appl. Mater. Interfaces 2021, 13, 23647.
- [45] Y. Lim, J. Park, S. Lee, J. Kim, J. Mater. Chem. A 2021, 9, 21175.
- [46] P. Halder, J. K. Singh, Energy Fuels 2020, 34, 14591.
- [47] Z. Wang, T. Zhou, K. Sundmacher, Chem. Eng. J. 2022, 444, 136651.
- [48] Y. Wu, H. Duan, H. Xi, Chem. Mater. 2020, 32, 2986.
- [49] V. Daoo, J. K. Singh, Acs Appl. Mater. Interfaces 2024, 16, 6971.
- [50] H. Tang, Q. Xu, M. Wang, J. Jiang, Acs Appl. Mater. Interfaces 2021, 13, 53454.
- [51] Y. Wang, Z.-J. Jiang, D.-R. Wang, W. Lu, D. Li, J. Am. Chem. Soc. 2024, 146, 6955.
- [52] X. Xue, M. Cheng, S. Wang, S. Chen, L. Zhou, C. Liu, X. Ji, Ind. Eng. Chem. Res. 2023, 62, 1073.
- [53] X. Sun, W. Lin, K. Jiang, H. Liang, G. Chen, Phys. Chem. Chem. Phys. 2023, 25, 8608.
- [54] P. Yang, G. Lu, Q. Yang, L. Liu, X. Lai, D. Yu, Green Energy Environ. 2022, 7, 1062.
- [55] H. Liang, W. Yang, F. Peng, Z. Liu, J. Liu, Z. Qiao, Apl Mater. 2019, 7, 091101.
- [56] W. Gao, W. Zheng, K. Yan, W. Sun, L. Zhao, Fuel 2023, 350, 128757.