
Comprehensive Overview of Machine Learning Application in 

MOFs: From Modeling Processes to Latest Applications and 

Design Classifications

Yutong Liu, Yawen Dong, Hua Wu*

Department of Chemistry, College of Sciences, Nanjing Agricultural University, 

Nanjing 210095, P. R. China

* corresponding authors

E-mail: wuhua@njau.edu.cn 

Supplementary Information (SI) for Journal of Materials Chemistry A.
This journal is © The Royal Society of Chemistry 2024



13 pages 

Contains 5 tables. 

Contents

Table S1. Summary of data sources.

Table S2. Summary of commonly used material databases.

Table S3. Summary of common material descriptors.

Table S4. Three mainstream Cross Validation (CV) methods.

Table S5. The application of MOFs combined with ML in the adsorption and 
separation of various gases.

References



Table S1. Summary of data sources.

Sources Descriptions Advantages Disadvantages Future trend

Experiment

The scientific study of 

synthesizing specific MOFs by 

manually adjusting various 

experimental parameters.

Because reliable data cannot be 

obtained, synthetic experiments under 

certain conditions cannot be replaced 

by computational methods.

Experiment is costly and time-

consuming, and the sensitivity of MOFs 

to the synthesis conditions will lead to 

the deviation of the results.

High-throughput 

experimental (HTE) + 

Machine Learning (ML)

Literature

Searchable written information 

that has been published in a 

journal or book.

A large amount of experimental 

information to be used is stored.

Provided as text, manual extraction of 

information is time-consuming, 

laborious and error-prone.

Natural Language 

Pprocessing (NLP) and 

Large Language Models 

(LLM)

Database

A publicly available or paid 

collection of crystal structures 

data.

A plenty of data and a variety of 

structural parameters are contained.

There are many sources, disordered 

relationships and poor universality.

Standardize data format, 

enhance its universality and 

systematicness.

Calculation

According to the existing data and 

combined with mathematics, 

physics and chemistry knowledge 

to expand the data.

Computational data sources are more 

readily available and apply to target 

attributes that lack sufficient data.

Some data are unreasonable and lack of 

experimental verification, which will 

interfere with the results of material 

development.

High-Throughput 

Computational Screening 

(HTCS) + Machine 

Learning (ML)



Table S2. Summary of commonly used material databases.

Database Number Year Descriptions URL
Inorganic Crystal 

Structure 

Database (ICSD)

over 

240,000
1913

The largest database in the world for totally 

identified inorganic crystal structures, 

provided by FIZ Karlsruhe GmbH.[1-3]

https://psds.ac.

uk/icsd

Cambridge 

Structure 

Database (CSD)

over 

1,000,000
1965

A database of over 1,000,000 small-molecule 

organic and organometallic crystal structures, 

including 69,666 MOFs.[4, 5]

https://psds.ac.

uk/csd

Crystallography 

Open Database 

(COD)

500,000 2003

An available collection of crystal structures of 

organic, inorganic, metal-organic compounds 

and minerals, excluding biopolymers.

http://crystallog

raphy.net/cod/b

rowse.html

Materials Project 154,718 2011

A core program of the Materials Genome 

Initiative that reveals the properties of all 

known inorganic materials using high-

throughput computing.[6]

https://next-

gen.materialspr

oject.org/

Automatic Flow 

(AFLOW)
3,530,330 2012

A globally available database of 3,530,330 

material compounds with over 734,308,640 

calculated properties, and growing.[7]

http://www.afl

owlib.org/

Hypothetical 

MOFs Database 

(hMOFs)

137,953 2012

A crystal structure database for screening 

hypothetical MOFs by large-scale assembly 

of metal clusters and organic ligands.[8]

http://hmofs.no

rthwestern.edu

5,109 2014

A collection of MOF structures derived from 

experimental data which can be immediately 

applied to molecular simulation.[9]

Computation-

Ready, 

Experimental 

MOFs Database 

(CoRE)
14,142 2019

A part of an update to the CoRE MOF 2014 

Database including over 14 000 porous, three-

dimensional MOF structures.[10]

https://zenodo.

org/records/769

1378

The Open 

Quantum 
1,022,603 2015

An Open-access database of DFT calculated 

thermodynamic and structural properties for 

https://www.oq

md.org/

https://psds.ac.uk/icsd
https://psds.ac.uk/icsd
https://psds.ac.uk/csd
https://psds.ac.uk/csd
http://crystallography.net/cod/browse.html
http://crystallography.net/cod/browse.html
http://crystallography.net/cod/browse.html
https://next-gen.materialsproject.org/
https://next-gen.materialsproject.org/
https://next-gen.materialsproject.org/
http://www.aflowlib.org/
http://www.aflowlib.org/
http://hmofs.northwestern.edu/
http://hmofs.northwestern.edu/
https://zenodo.org/records/7691378
https://zenodo.org/records/7691378
https://zenodo.org/records/7691378
https://www.oqmd.org/
https://www.oqmd.org/


Materials 

Database 

(OQMD)

more than 1 million materials, created in 

Chris Wolverton's group at Northwestern 

University.[11]

Material Genome 

Engineering 

Databases 

(MGED)

710,050 2018

A database / application software integrated 

system platform based on material genetic 

engineering.

https://www.m

gedata.cn/

Quantum MOF 

(QMOF)
14,482 2021

An online database of computed quantum-

chemical properties for more than 14,000 

experimentally synthesized MOFs.[12]

https://figshare.

com/articles/da

taset/QMOF_D

atabase/131473

24

MOFX-DB
over 

160,000
2023

A publicly available Database of 

Computational Adsorption Data for 

Nanoporous Materials.[13]

https://mof.tech

.northwestern.e

du

ARC-MOF
over 

280,000
2023

A diverse database of MOFs with DFT-

derived partial atomic charges and 

descriptors.[14]

https://doi.org/

10.5281/zenod

o.6908727

https://www.mgedata.cn/
https://www.mgedata.cn/
https://figshare.com/articles/dataset/QMOF_Database/13147324
https://figshare.com/articles/dataset/QMOF_Database/13147324
https://figshare.com/articles/dataset/QMOF_Database/13147324
https://figshare.com/articles/dataset/QMOF_Database/13147324
https://figshare.com/articles/dataset/QMOF_Database/13147324
https://mof.tech.northwestern.edu/
https://mof.tech.northwestern.edu/
https://mof.tech.northwestern.edu/
https://doi.org/10.5281/zenodo.6908727
https://doi.org/10.5281/zenodo.6908727
https://doi.org/10.5281/zenodo.6908727


Table S3. Summary of common material descriptors.

Categories Descriptors
Pore size, dominant pore size, maximum pore size

Available pore volume (Va)

Gravimetric surface

Surface area (SA), Accessible surface area (ASA), volumetric 

surface area (VSA), gravity surface area (GSA)

void fraction (VF)

global cavity diameter (GCD)

largest cavity diameter (LCD)

pore limiting diameter (PLD)

pore size distribution (PSD)

pore volume (PV)

Geometrical descriptor

density (ρ)

pore connectivity

pore morphology

porosity

cavity size

coordination numbers

bond angles

Topological descriptor

atom-specific persistent homology (ASPH)

atomic type and number

degree of unsaturation, total unsaturation

electronegativity

atomic composition

electronic configurations

metallic percentage

oxygen to metal ratio (OMR)

Chemical descriptor

nitrogen to oxygen ratio (NOR)



crystal structure

electrostatic potential-derived charge (ESPC)

cohesive energies

voronoi energies

electronic band structure 

density of states

heat of adsorption (ΔadsH)

working capacity (ΔW)

energy efficiency

isosteric heat (Qst)

Henry coefficient (KH)

effective point charge (EPoCh) [15]

Energy descriptor

potential energy surface (PES)



Table S4. Three mainstream Cross Validation (CV) methods.

CV Type Application situation Advantages Disadvantages

Hold-out CV

It is common in early tasks such as decision 

tree, naive Bayesian classifier, linear 

regression and logistic regression.

The dataset partition is simple and easy to 

operate.

Only part of the data is used in the model training, 

and the dataset is divided only once. So the result 

is accidental.[16]

LOOCV It is suitable for small sample datasets.
All data points are utilized, so the bias is 

low.

Training is more complex and time-consuming.[17] 

And the validity of the test model changes greatly. 

Because testing for one data point, the estimated 

value of the model is greatly affected by the data 

point.

K-CV It is suitable for large sample datasets.

The use of data is more efficient after 

multiple divisions, and the contingency of 

the results is greatly reduced, thereby 

improving the accuracy of the model.

Random and equal division of data is not suitable 

for datasets containing different categories.



Table S5. The application of MOFs combined with ML in the adsorption and 

separation of various gases.

Gas type ML Algorithms References

Methane (CH4)

Decision Tree (DT), Random Forest (RF), Support Vector 

Machine (SVM), Poisson regression, Neural Network 

(NN), Unsupervised Transfer learning (TL), etc.

[18-27]

Carbon Dioxide (CO2)
SVM, DT, RF, NN, Gradient Boosting Machines (GBM) 

Multiple Linear Regression (MLR), etc.
[28-36]

CO2 / CH4 DT, SVM. [37]

Hydrogen (H2)

DT, RF, Support Vector Regression (SVR), Linear 

Regression (LR), K-NearesNeighbor (KNN), Gradient 

Boosting Regression (GBR), etc. 

[38-40]

CO2 / H2 Gradient Boosted Regression Tree (GBRT) [41]

Nitrogen (N2) K-means clustering [42]

O2 / N2 RF, GBRT, and Extreme Gradient Boosting (XGB). [43]

Xenon / Krypton

(Xe / Kr)

MOF-NET and Multi-Species Genetic Algorithm 

(MSGA) [44]
[45]

Ethane / Ethylene RF, LR, DT, SVM, kNN, GBM, etc. [46-48]

Propane / Propylene RF, DT, etc. [49-52]

Isobutene / Isobutane

LASSO, Elastic Net, SVM, XGBoost, Ridge Regression 

(RR), Bayes Regression (BR), and Artificial Neural 

Network (ANN).

[53]

Acetylene
DT, SVM, Gradient Boosting Decision Tree (GBDT), and 

Back Propagation Neural Network (BPNN).
[54]

High-sour natural gas BPNN and the Partial Least-Square (PLS) [55]

H2S / CO2 / CH4

XGB, GBRT, Multi-layer perceptron (MLP), and the 

model obtained from the Tree-based Pipeline 

Optimisation Tool (TPOT).

[56]
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