Supporting Information

Construction of Co/Co₂P/VN heterointerfaces enhances trifunctional hydrogen and oxygen catalytic reactions

Yixuan Huang¹, Mengyao Li^{1,*}, Zhenting Liu², Chun-Ho Lin¹, Peiyuan Guan¹, Zijian Feng¹, Yingze Zhou¹, Zekun Dong¹, Jinbo Wang¹, Chao Liu¹, Tao Wan¹, Xiaoyi Li^{2,*}, Zhaojun Han^{3,*}, Dewei Chu¹

¹ School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052, Australia

² School of Material Science and Engineering, International S&T Cooperation Foundation of Shaanxi Province, Shaanxi University of Science and Technology, Xi'an 710021, China

³ School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane 4000, Australia

Corresponding authors:

mengyao.li1@unsw.edu.au (M. L.)

bs210211007@sust.edu.cn (X. L.)

zhaojun.han@qut.edu.au (Z. H.)

Fig. S1 XRD patterns with the zoomed-in image of Co, Co/Co₂P, Co/VN, and Co/Co₂P/VN.

Fig. S2 XRD patterns of Co/Co₂P/VN with different pyrolysis temperatures (600, 700, and 800 °C).

Fig. S3 SEM images of Co/Co₂P/VN with different pyrolysis temperatures: (a, d) Co/Co₂P/VN-600; (b, e) Co/Co₂P/VN-700; (c, f) Co/Co₂P/VN-800.

Fig. S4 TEM and HRTEM images of (a, b) Co, (c, d) Co/Co₂P, and (e, f) Co/VN.

Fig. S5 The high-resolution XPS spectra: (a) P 2p of Co/Co_2P and $Co/Co_2P/VN$ samples; and (b) O 1s of Co, Co/Co_2P , Co/VN and $Co/Co_2P/VN$ samples.

Fig. S6 HER polarization curves of $Co/Co_2P/VN$ with different pyrolysis temperatures in 1.0 M KOH solution.

Fig. S7 Cyclic voltammetry curves of (a) Co, (b) Co/Co₂P, (c) Co/VN, and (d) Co/Co₂P/VN catalysts with different scanning rates (10, 20, 40, 60, 80, 100, 120, 140 mV/s) for HER in 1.0 M KOH solution.

Fig. S8 (a) TEM and (b) HRTEM images of $Co/Co_2P/VN$ after HER chronoamperometry test in 1.0 M KOH electrolyte.

Fig. S9 LSV polarization curves of $Co/Co_2P/VN$ with different pyrolysis temperatures in 1.0 M KOH solution.

Fig. S10 Cyclic voltammetry curves of (a) Co, (b) Co/Co₂P, (c) Co/VN, and (d) Co/Co₂P/VN catalysts with different scanning rates (10, 20, 40, 60, 80, 100, 120, 140 mV/s) for OER in 1.0 M KOH solution.

Fig. S11 (a) TEM and (b) HRTEM images of $Co/Co_2P/VN$ after OER chronoamperometry test in 1.0 M KOH electrolyte.

Fig. S12 RDE voltammetry curves of $Co/Co_2P/VN$ with different pyrolysis temperatures in 1.0 M KOH solution.

Fig. S13 (a) TEM and (b) HRTEM images of $Co/Co_2P/VN$ after ORR chronoamperometry test in 0.1 M KOH electrolyte.

Fig. S14 The stability evaluation for $Co/Co_2P/VN$ and Pt/C catalysts in O₂-saturated 0.1 M KOH with the injection of 3.0 M methanol.

Fraction of					
each	Metal-N	Pyridinic-N	Pyrrolic-N	Graphitic-N	Oxidized
nitrogen	[%]	[%]	[%]	[%]	N [%]
species					
Co/Co ₂ P/VN	11.33	20.79	23.98	39.22	4.69
Co/VN	27.75	28.91	19.13	17.69	6.52

Table S1. The details for calculated fractions of each nitrogen species in the N 1sXPS spectrum.

Electrocatalysts	$R_{ct}(\Omega)$
Со	80.96
Co/Co ₂ P	47.02
Co/VN	39.50
Co/Co ₂ P/VN	23.55

Table S2. Fitted data from Nyquist plots of as-prepared samples toward HER.

Table S3. Electrocatalytic HER performance of the Co/Co₂P/VN material compared with that of reported Co-based, Co₂P-based, or VN-based electrocatalysts in 1.0 M KOH electrolyte.

Catalysts	Electrolyte	Current density (j, mA cm ⁻²)	Overpotential at corresponding <i>j</i> (mV)	Stability test	Reference
Co/Co ₂ P/VN	1.0 M KOH	10	111	50 h	This work
Co ₂ P/CoP@Co @NCNT	1.0 M KOH	10	118	50 h	Chemical Engineering Journal. 2022, 430(2): 123877
Co/WN	1.0 M KOH	10	143	30 h	International Journal of Hydrogen Energy. 2022, 06(061): 0360-3199
Co Cu/NC	1.0 M KOH	10	210	24 h	ACS Sustainable Chemistry & Engineering. 2022, 10(18): 5986-5997
Co@NC	1.0 M KOH	10	220	40000 s	Journal of Solid State Chemistry. 2022, 309: 122989
Co ₂ P/CoNPC	1.0 M KOH	10	208	30000 s	Advanced Materials. 2022, 32(36): 2003649
FeCo/Co ₂ P@NP CF	1.0 M KOH	10	260	1000 cycles	Advanced Energy Materials. 2020, 10(10): 1903854
VN/Co–NC	1.0 M KOH	10	44	75 h	Energy & Environmental Science. 2021, 14(5): 3160-3173
VN/Co@NCNT	1.0 M KOH	10	180	60 h	Journal of Alloys and Compounds. 2021, 853: 157257
VN/WN@NC	1.0 M KOH	10	122	100 h	Chemical Engineering Journal. 2021, 429: 131945
Co/N-CNT/VN	1.0 M KOH	10	63	20 h	Nano Energy. 2020, 73: 104788

Electrocatalysts	$R_{ct}(\Omega)$
Со	118.60
Co/Co ₂ P	92.36
Co/VN	86.17
Co/Co ₂ P/VN	55.71

Table S4. Fitted data from Nyquist plots of as-prepared samples toward OER.

Table S5. Electrocatalytic OER performance of the Co/Co₂P/VN material compared with that of reported Co-based, Co₂P-based, or VN-based electrocatalysts in 1.0 M KOH electrolyte.

Catalysts	Electrolyte	Current density (<i>j</i> , mA cm ⁻²)	Overpotential at corresponding <i>j</i> (mV)	Stability test	Reference
Co/Co ₂ P/VN	1.0 M KOH	10	379	50 h	This work
Co ₂ P/CoP@Co @NCNT	1.0 M KOH	10	256	60 h	Chemical Engineering Journal. 2022, 430(2): 123877
Co@N-PCNF	1.0 M KOH	10	440	200 h	Electrochimica Acta. 2022, 411: 140090
Co@NC	1.0 M KOH	10	350	40000 s	Journal of Solid State Chemistry. 2022, 309: 122989
Co ₂ P/CoNPC	1.0 M KOH	10	326	30000 s	Advanced Materials. 2022, 32(36): 2003649
FeCo/Co ₂ P@NP CF	1.0 M KOH	10	330	1000 cycles	Advanced Energy Materials. 2020, 10(10): 1903854
Ni ₃ FeN/VN–NG	1.0 M KOH	10	1.56V	-	Chemical Engineering Journal. 2022, 437(1): 135291
Co/N-CNT/VN	1.0 M KOH	10	240	20 h	Nano Energy. 2020, 73: 104788
D-Ni ₃ N QDs/VN	1.0 M KOH	10	226	10 h	Journal of Materials Chemistry A. 2020, 8(40): 21173-21180
CoFe-PBAs/VN	1.0 M KOH	10	398	30 h	International Journal of Hydrogen Energy. 2020, 45(56): 31410-31417

Table S6. Electrocatalytic ORR performance of the $Co/Co_2P/VN$ material compared with that of reported Co-based, Co_2P -based, or VN-based electrocatalysts in 1.0 M KOH electrolyte.

Catalysts	E _{oneset} (V vs. RHE)	E _{1/2} (V vs. RHE)	n ^{a)}	Reference
Co/Co ₂ P/VN	1.070	0.865	3.9	This work
		0.825	3.72	Electrochimica Acta.
Co@N-PCNF	-			2022, 411: 140090
				International Journal of
TiCN-BCN-Co	0.94	0.83	4	Hydrogen Energy. 2022,
				47(48): 20894-20904
Co N DCN	0.90	0.82	about 4.0	Carbon, 2019, 141: 704-
Co-N-PCN				711
Co Cu/NC	-	0.83	3.9	ACS Sustainable
				Chemistry & Engineering.
				2022, 10(18): 5986-5997
Co ₂ P/CoNPC	0.963	0.843	3.87	Advanced Materials.
				2022, 32(36): 2003649
FeCo/Co ₂ P@NPCF	0.85	0.79	3.85	Advanced Energy
				Materials. 2020, 10(10):
				1903854
Ni₃FeN/VN–NG		0.87	3.87	Chemical Engineering
	-			Journal. 2022, 437(1):
				135291
D-Ni ₃ N QDs/VN		0.837	3.95	Journal of Materials
	0.963			Chemistry A. 2020, 8(40):
				21173-21180
Co-V-N/NC	0.98	0.85	3.87	Carbon. 2020, 159: 16-24