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Materials and reagents: The chemicals employed for the synthesis of dipeptide i.e., benzyl
ester of phenylalanine, N-tertbutyloxycarbonyl leucine (N-Boc-Leu), N, N-
diisopropylethylamine (DIPEA), 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC),
hydroxybenzotriazole (HOBt), 1-fluoro-2-isocyanatobenzene, trifluoroacetic acid (TFA),
dichloromethane (DCM) and oleic acid were purchased from TCI Chemical limited. The
pesticide solutions were procured from Sigma-Aldrich and their 1 mM solutions were

prepared in Milli-Q water. Zinc nitrate hexahydrate [Zn (NOs),.6H,O] was purchased from

sS4



Sigma-Aldrich. These chemicals were employed in the studies without any further
purification.

Synthesis of DM2: The synthesis of DM2was carried out in a stepwise manner. Initially, (A)
was synthesized by a coupling reaction between the benzyl ester of phenylalanine (1.2 eq.)
and N-Boc-Leu (1 eq.) at 0-4°C under an inert atmosphere using DIPEA (2.2 eq.) as a base in
the presence of coupling agent, EDC (1.2 eq.) and HOBt (1.2 eq.). The reaction was
quenched with ice-cold Milli-Q water and concentrated under reduced pressure resulting in
pure product (A). It was refluxed in TFA/DCM (20%) to accomplish the deprotection of Boc
group leading to the formation of precursor (B).The reaction of precursor (B) with 1-fluoro-2-
isocyanatobenzene in acetonitrile at room temperature resulted in the formation of dipeptide
i.e., N-functionalized naphthyl urea derivative of dipeptide (DM2)as shown in Scheme 1. FT-
IR, '"H-NMR, '3C-NMR, and ESI-MS techniques confirmed the formation of benzyl((2-
fluorophenyl) carbamoyl)-L-leucyl-Lphenylalaninate, DM2 as shown inFig. S1-S4. The
characteristic carbonyl stretching frequency of -CO-NH- moiety of peptide bond appeared at
1638 cm! in the FT-IR spectrum of DM2. The 'H-NMR and 3C-NMR established the
formation of DM2 and its ESI-MS spectrum displayed an M+1 peak at m/z=506 confirming

the formation of dipeptide, DM2.

Characterization data of Benzyl((2-fluorophenyl) carbamoyl)-L-leucyl-L-phenylalaninate
[DM2]:'H-NMR (400 MHz, DMSO-dy) 6 8.54 (d, J = 7.3 Hz, 1H), 8.36 (d, J = 3.1 Hz, 1H),
8.11 — 8.06 (m, 1H), 7.37 — 6.98 (m, 12H), 6.88 (q, J = 7.6 Hz, 1H), 6.79 (d, J = 8.5 Hz, 1H),
5.07-4.97 (m, 2H), 4.54 — 4.44 (m, 1H), 4.30 — 4.19 (m, 1H), 3.09 — 2.87 (m, 2H), 1.53 (q, J
=17.6, 6.1 Hz, 1H), 1.41 — 1.18 (m, 2H), 0.81 (d, J = 6.7 Hz, 6H); 3C-NMR (DMSO-d;)
173.24, 171.71, 154.80, 137.70, 136.25, 129.63, 128.86, 128.73, 128.53, 128.40, 127.01,
124.86, 122.06, 120.53, 115.38, 115.19, 66.54, 54.15, 51.48, 42.61, 36.96, 24.66, 23.53,

22.42; ESI-MS: (TOF MS ES*) m/z: [M+H] = 506.
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Fabrication of DM2-capped ZnO NPs: A cost-effective and straightforward sol-gel route
was adopted for the fabrication of DM2-capped ZnO NPs. Typically, 3 mmol zinc nitrate
hexahydrate and 2 mmol DM2 were dissolved in 5 mL anhydrous ethanol followed by
stirring at ambient temperature. Parallel to this, a 3 mmol alcoholic NaOH solution
(precipitating agent) was prepared in ethanol. Further, a few drops of NaOH solution were
poured into the Zn?" precursor solution until pH was adjusted to 8-9. The stirring was
continued for another 2 h and a homogenous suspension was obtained. This resulted in a
tailored structure of dipeptide-capped zinc oxide nanoparticles which were separated by
ultracentrifugation. It was further treated several times with ethanol and water to ensure the
extermination of undesirable impurities. The collected homogenous white precipitates were
dried in a hot air oven for 3 h at 50°C. The as-prepared nanohybrid material was denoted as
dipeptide-capped ZnO nanoparticles, DM2-capped ZnO NPs.

Photophysical and electrochemical studies of DM2 and DM2-capped ZnO NPs: The
recognition studies of DM2 and DM2-capped ZnO NPs had been executed using 1 mM
solutions of OPPs viz. diethyl cyanophosphate, diethyl chlorophosphate, phosmet, malathion,
azinphos methyl, chlorpyrifos, profenofos, and quinalphos. The photophysical studies of
DM2 were carried out by using a 0.2 mM solution of ligand DM2 in DMF owing to its
excellent solubility in this aprotic solvent. It displayed an absorbance at A273 nm ascribed to
n—7n* transitions. The photophysical studies of DM2 were performed on a fluorescence
spectrophotometer at room temperature. The binding studies were carried out by employing
an excitation wavelength of 273 nm and the emission wavelength appeared at 321 nm.
Further, the binding studies were performed using the 1 mM solutions of various OPPs (in
water). The emission profiles were noted upon the addition of OPPs into volumetric flasks
containing a 5 mL solution of DM2 as shown in Fig. S9. It was found that DM2 did not show

a selective response towards any tested OPPs. Later, an organic-inorganic nanohybrid
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material (DM2-capped ZnO NPs) was fabricated to characterize and explore the capping-
related spectroscopic and electrochemical properties of DM2 capped over the surface of ZnO.
The practical utility of the developed material, DM2-capped ZnO NPs was established by
performing various secondary studies such as the effect of pH, salt perturbation, interference
studies, response time studies, efc. The effect of acidic and basic pH was established using
freshly prepared 1 mM HCI and 1 mM NaOH solutions respectively. Salt studies were
performed by adding tertiary butyl ammonium perchlorate to a solution of DM2-capped ZnO
NPs until the saturation point. For interference studies, 2-fold concentrations of tested OPPs
were added to the complex of DM2-capped ZnO NPs+quinalphos. The response time studies
of DM2-capped ZnO NPs for quinalphos were examined by noting its fluorescence profiles
up to 140 s with varying concentrations of quinalphos (35, 70, and 105 nM). The cyclic
voltammetry of DM2-capped ZnO NPs was performed using a glassy carbon electrode
(GCE), Ag/AgCl, and platinum wire as the working electrode, reference electrode, and
auxiliary/counter electrode respectively using 0.1 M PBS buffer (pH=7.4) as electrolyte
medium and cyclic voltammograms were obtained in the -1.5 V to +1.5 V potential range at a
scan rate of 100 mV/s. The scan rate studies were accomplished in the potential range of 10-
250 mV/s. Before the onset of every experiment, the surface of the working electrode was
prepared by polishing it with alumina slurry and washed thrice with ethanol and Milli-Q
water. The reference electrode was filled with 3 M KCI solution before the onset of every
experiment. The impedance studies were performed by employing 0.1 M KCI containing [Fe
(CN)g]*"* in the 10°-0.001 Hz frequency range at open circuit voltage possessing a current
amplitude of 5 mV. The current vs. time i.e., amperometry titrations were performed in 0.01
M PBS buffer at a potential of +0.39 V and -0.39 V having a time duration of 0.01 s and a

time interval of 60 s.
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Secondary studies of DM2-capped ZnO NPs: The effect of pH was explored by adding 1
mM HCI and 1 mM NaOH solutions to DM2-capped ZnO NPs and the pH of the solution
was varied from 3-11.5. Their FL intensity revealed that the material showed a stable
response in varying pH ranges as shown in Fig. S12. A minimal salt effect was observed
upon the gradual addition of TBA ClO4 to DM2-capped ZnO NPs as there were negligible
changes in the FL intensity of DM2-capped ZnO NPs upon its addition up to 120 eq. as
shown in Fig. S13. The effect of salt was also analyzed after the binding of quinalphos to
DM2-capped ZnO NPs and interestingly, the complex showed a stable salt response as shown
in Fig. S14. The ability of quinalphos to bind with DM2-capped ZnO NPs was also explored
with time in the presence of varying concentrations of DM2-capped ZnO NPs+quinalphos. It
was perceived that the quinalphos could bind with DM2-capped ZnO NPs within the first 20
s and the response remained unchanged up to 140 s as shown in Fig. S15. It could be
concluded that the proposed material served well towards the selective recognition of
quinalphos under given experimental conditions.

Cell culture and cytotoxicity analysis: The 1.929 fibroblast cell lines were procured from
the National Chemical Laboratory, Pune. The cells were grown in 10% fetal bovine serum
and 1% penicillin-streptomycin antibiotic solution in DMEM (Dulbecco’s Modified Eagle
Medium) media at 37°C and a 5% CO, humidified atmosphere. The cells were allowed to
grow for 1-2 days before their analysis until their 80% growth was obtained. The grown cells
were further stored in an incubator at 37°C and a 5% CO, humidified atmosphere. The
suspension thus obtained was centrifuged at 2000 rpm for 2 min to result in the precipitation
of cells. Later, the cells were rinsed thoroughly with trypsin and resuspended in DMEM. On
average, 10,000 cells were spread and allowed to grow onto a culture plate before DM2-

capped ZnO NPs tagging with varying concentrations (0.1, 0.2, 1, 2, 4 ug).
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Degradation efficiency of DM2-capped ZnO NPs towards the degradation of quinalphos,

diethyl

profenofos,

chlorpyrifos,malathion,

phosmet,

(AZM),
cyanophosphate (DCNP), and diethyl chlorophosphate (DCP).

azinphos-methyl

S20



Control

0 20 40 60 80 100
% Degradation

Fig. S21: Radical scavenging experiment.

Fig. S22: ESI-MS spectrum of DM2-capped ZnO NPs+quinalphosvalidating its
transformation into quinoxaline-2-thiol (m/z=162).
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Fig. S23: ESI-MS spectrum of DM2-capped ZnO NPs+quinalphosconfirming its
conversion into O-ethyl O-({[2-hydroxyamino) phenyl] amino) methyl} hydrogen

phosphonothioate (m/z=290).

Fig. S24: ESI-MS spectrum showing the absence of peak corresponding to m/z=298

(quinalphos) upon its interaction with DM2-capped ZnO NPs.
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Fig. S25: DLS spectra of QuinoClean (aerospray comprising of 1:1 solution of oleic acid:
vegetable oil) showing its stability over 6 weeks at ambient temperature.

Fig. S26: DLS spectra of 2:1 (oleic acid: vegetable oil) solution for11 days.
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Table S1: Comparison of varying amounts of oleic acid and vegetable oil and their

corresponding hydrodynamic size.

Sr.
No.

Oleic
acid

Oil

Size
(from
DLYS)

DLS Spectrum

Stability

1.

1

223 nm

6 Weeks

457 nm

11 days

712 nm

1000

6 days

848 nm

Intensiy (%]

cnd o BNERELS

R d 88

88

| &

3 days
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Fig. S27:Changes in the (A, C, E, G) absorbance and (B, D, F, H) FL intensity of DM2-
capped ZnO NPs-based core@corona formulation (A, B) over 6 weeks; (C, D) upon the
addition of 1 mM HCI and 1mM NaOH respectively; (E, F) upon addition of TBA ClO4 and
(G, H) effect of temperature variation.
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Table S2: Comparison table of present work with other analytical techniques.

Sr. Material Used Technique used LOD Detection/ Reference
No. Degradation
I. 2- amino-4- Colorimetric and 14.37 pg/L Detection !
thiazoleacetic acid spectrophotometric
anchored AuNPs methods
(ATA-AuNPs)
2. GO-ZnO UV irradiation, LC-MS - 98% 2
composite Degradation
in 45 min
3. Detection 3
Azstilbene Fluorescence-based 2.0 uyM
fluoroprobe detection method
4. Carbon dots (CDs) | Fluorescence assay using Detection 4
from Tagetes CD 1.7 ng/mL
erecta flower
(TEF), named as
“TEF-CDs’,
5. Trypsin- Fluorescence Detection 3
encapsulated Au— spectroscopy 0.32 uM
Ag bimetallic NCs
6. Carbon quantum Fluorescence Detection 6
dot integrated spectroscopy 0.3 nM
metal-organic
framework
[CD@Ui0-66-
NH,-Cu?*]
7. Photoinduced electron- Detection 7
PET immunoassay transfer (PET) 0.007 pg/mL
immunoassay
8. UV-visible spectroscopy, Detection 8
meso-tetra (4- Fourier transform 0.01 mg/kg

sulfonatophenyl)
porphine (TPPS,)

infrared (FT-IR), and
liquid chromatography-
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10.

11.

12.

13.

Cartridge-based
assembly [silica
coating of Cu (II)-
Au@ONP]
Sulphur-doped
TiO, (S-TiO,)
Aqueous TiO,
suspension

Aqueous
suspensions of
TiO,

DM2-capped ZnO

NPs-based Type-

IT heterojunctions
[Detection and
degradation]

References

tandem mass
spectrometry (LC-
MS/MS)

Fluorescence
spectroscopy

UV-visible spectroscopy

UV-visible spectroscopy,
gas chromatography-
mass spectrometry (GC—
MS), and ion
chromatography (IC)

UV-visible spectroscopy

and gas chromatography-

mass spectrometry (GC—
MS)

Spectroscopic and
electrochemical
methods

2.4 oM

2 nM
(spectroscopic
techniques)
and 3 nM
(electrochemi
cal
techniques)

Detection

98.09%
Degradation
89%
Degradation
in4h

89.67%
degradation
in3h

Detection
and 99%
Degradation
in 63 min
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