Supporting information

Linkage engineering regulated π -conjugated covalent organic

frameworks (COFs)-based anode for high-performance LIBs

Changyu Weng¹, Hongmei Yuan¹, Jie Wang¹, Longlong Ma^{1,2}, Jianguo Liu^{1*}

¹ Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of

Energy and Environment, Southeast University, Nanjing 210096, PR China.

² Department of Thermal Science and Energy Engineering, University of Science and Technology

of China, Hefei 230026, P.R. China.

* Corresponding authors' e-mail: liujg@seu.edu.cn

Contents

- 1. Experimental section
- 2. Procedures for COFs Synthesis
- 3. Electrochemical measurements
- 4. Elemental analysis
- 5. X-ray diffraction (XRD)
- 6. Nitrogen adsorption-desorption isotherms
- 7. Thermal Gravimetric Analysis
- 8. Scanning Electron Microscope
- 9. High-Resolution Transmission Electron Micrographs
- 10. Electrochemical Performance
- 11. X-ray Photoelectron Spectroscopy (XPS)
- 12. Proposed reversible electrochemical redox mechanism
- 13. Band structures
- 14. Comparison of the electrochemical performances
- 15. Atomistic coordinates of COFs@IM and COFs@BOA

1. Experimental section

Materials

All reagents were obtained from commercial supplies and used as received. Nmethylpyrrolidone (99.0%), 1,3,5-trimethylbenzene (99.0%), benzimidazole (99.0%), 1,3,5-triformylbenzene (TFB, 99.0%), 2,5-diaminohydroquinone dihydrochloride (DABD, 98.0%), benzene-1,3,5-triamine trihydrochloride (TAB, 98.0%), 2,5dihydroxyterephthalaldehyde (DHA, 98.0%), 1,4-dioxane (99.5%), acetic acid (99.0%), tetrahydrofuran (THF, 99.5%), and methanol (99.9%), carbon nanotubes (CNT, purity:>95 wt%, OD:<2nm, length:5-30 μ m) were purchased from Tansoole. The acetone (99.0%) was purchased from Sinopharm Chemical Reagent Limited Corporation. Acetylene black and polyvinylidene fluoride (PVDF) were purchased from Canrd.

Material Characterization

The synthesis of the samples was verified using Fourier transform infrared spectroscopy (FT-IR, Nicolet IS50, Thermo Fisher Scientific). The crystalline structure of the samples was studied using X-ray diffractometry (XRD, Smartlab (3), Rigaku). The microstructure was investigated using a scanning electron microscope (SEM, Nova Nano SEM450, FEI) and transmission electron microscope (TEM, Talos F200X, Thermo Fisher Scientific). The system of Thermo Scientific K-Alpha was employed to obtain X-ray photoelectron spectroscopy (XPS) spectra. The values of binding energy were calibrated by using C 1s peak at 284.8 eV. Nitrogen adsorption and desorption isotherms were measured at 77 K using a Micromeritics 3Flex. The samples were degassed at 120 °C for 10 h before the measurements. Surface areas were calculated from the adsorption data using Brunauer-Emmett-Teller (BET). Thermogravimetric analysis (TGA) was carried out on TG209 F3 by heating samples from 30 to 900 °C in a dynamic nitrogen atmosphere with a heating rate of 10 °C·min⁻¹. the ¹³C crosspolarization solid-state nuclear magnetic resonance (¹³C CP/MS NMR) spectrum was performed by Bruker-500. The elemental analysis was studied using a Vairo EL cube. The electrical conductivity was measured by four-probe conductivity measurements (ST2742-B) and high resistance meter measurements (ST2643) under a pressure of 20 MPa.

Bragg's Law:1

$$n \lambda = 2d\sin \theta$$

where n is the diffraction order (usually n=1), θ is measured from the surface normal, the wavelength λ (Cu K α : λ =0.15406 nm), and d is the layer spacing of the COFs.

Density functional theory (DFT) calculation

The theoretical calculations were based on the DFT using the CASTEP, Dmol3,

and Reflex tools modules of Materials Studio (MS) software. The functional of CASTEP was chosen as Perdew-BurkeErnzerh (PBE) in generalized gradient approximation (GGA).

The weight ratio of COFs and CNT in COFs@CNT

The weight ratio of COFs and CNT in the COFs@CNT was investigated based on the N and C contents in the pristine COFs, the CNT, and the COFs@CNT, as shown in Table S1. The two equations can be described as follows:

 $P_{\text{COFs}} \times N_{\text{COFs}} + P_{\text{CNT}} \times N_{\text{CNT}} = N_{\text{COFs}@\text{CNT}}$ $P_{\text{COFs}} \times C_{\text{COFs}} + P_{\text{CNT}} \times C_{\text{CNT}} = C_{\text{COFs}@\text{CNT}}$

Where N_{COFs} and C_{COFs} , N_{CNT} and C_{CNT} , $N_{\text{COFs@CNT}}$ and $C_{\text{COFs@CNT}}$ correspond to the weight percentages of N and C in pristine COFs, pristine CNT and the COFs@CNT composite, respectively. P_{COFs} and P_{CNT} correspond to the mass percentages of COFs and CNT in the COFs@CNT composite.

Capacity contribution of COFs in COFs@CNT calculation

The composite capacity of COFs@CNT can be regarded as the contribution of two components, as described by the following equation:

$$C_{\rm COFs@CNT} = C_{\rm COFs} \times P_{\rm COFs} + C_{\rm CNT} \times P_{\rm CNT}$$

where $C_{\text{COFs}@CNT}$, C_{COFs} , and C_{CNT} represent the capacities of COFs@CNT, COFs, and CNT, respectively. P_{COFs} and P_{CNT} correspond to the mass percent of COFs and CNT in the COFs@CNT composite.

2. Procedures for COFs Synthesis

Synthesis of COFs@BOA

TFB (48.6 mg, 0.3 mmol) and DABD (95.8 mg, 0.45 mmol) were suspended in a mixture of *N*-methylpyrrolidone and 1,3,5-trimethylbenzene (1:1 V: V, 5 mL). After the mixture was sonicated for 20 min, benzimidazole (159.5 mg, 1.35 mmol) was added. Subsequently, the Pyrex tube was frozen at 77 K using a liquid N₂ bath and degassed by three freeze-pump-thaw cycles, then sealed under vacuum and heated at 120 °C for 72 hours. The resulting COFs@BOA precipitate was isolated by vacuum filtration and washed with THF, methanol, and acetone, then dried at 100 °C under vacuum for 24 hours to give the desired COFs@BOA.

Synthesis of COFs@BOA-30 and COFs@BOA-15

The COFs@BOA-30 and COFs@BOA-15 were prepared using a similar synthesis method. The only difference was that the CNT (COFs@BOA-30: 43.3 mg; COFs@BOA-15: 21.7 mg) was added at the same time as TFB (48.6 mg, 0.3 mmol) and DABD (95.8 mg, 0.45 mmol). The other processes were consistent with those used to prepare COFs@BOA.

Synthesis of COFs@IM

TAB (69.7 mg, 0.3 mmol) and DHA (74.7 mg, 0.45 mmol) were suspended in a mixture of mesitylene and dioxane (1:1 V: V, 2 mL). After the mixture was sonicated for 20 minutes, acetic acid (6 M, 0.2 ml) was added. Subsequently, the Pyrex tube was frozen at 77 K using a liquid N₂ bath and degassed by three freeze-pump-thaw cycles, then sealed under vacuum and heated at 120 °C for 72 hours. The resulting COFs@IM precipitate was isolated by vacuum filtration and washed with THF, methanol, and acetone, then dried at 100 °C under vacuum for 24 hours to give the desired COFs@IM.

Synthesis of COFs@IM-30 and COFs@IM-15

A similar synthesis method was applied to prepare the COFs@IM-30 and COFs@IM-15. The only difference was that adding the CNT (COFs@IM-30: 43.3 mg; COFs@IM-15: 21.7 mg) at the same times as adding TAB (69.7 mg, 0.3 mmol) and DHA (74.7 mg, 0.45 mmol). Other processes were consistent with the preparation of COFs@IM.

Synthesis of COFs@BOA/30 and COFs@IM/30

COFs@BOA/30 and COFs@IM/30 were synthesized through a simple physical mixing technique. The COFs@BOA with 70 mg (COFs@IM with 46 mg) and CNT with 30 mg (54 mg) were transferred to a mortar and then ground for a 30 min grind to obtain homogeneous composites.

3. Electrochemical measurements

Coin-type (CR2032) cells were assembled in an Ar-filled glove box (H₂O < 0.1 ppm, O₂ < 0.1 ppm) with lithium metal foil as the anode and Celgard 2325 as the separator. The electrolyte was 1.0 M LiPF₆ in a mixture of dimethyl carbonate (DMC) and ethylene carbonate (EC) (1:1 v/v). The active materials (COFs and COFs@CNT

were treated by ball milling for 8 hours) were mixed with acetylene black and polyvinylidene fluoride binder (PVDF) solution in a weight ratio of 6:3:1 in *N*-methyl-2-pyrrolidinone (NMP) respectively. The slurry was cast on the Cu foil and dried for 10 h at 100 °C under vacuum to remove NMP. The discharge and charge measurements were carried out on a Land instruments CT3001A testing system at various current densities of 100-2,000 mA g^{-1} with a cut-off voltage of 0.005-3.0 V vs Li⁺/Li. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) measurements were conducted using the coin cells on a CHI 760E electrochemical workstation.

4. Elemental analysis

Samples	N (%)	C (%)	H (%)
COFs@BOA	11.818	62.225	5.164
COFs@BOA-30	9.455	69.696	5.137
COFs@IM	8.697	61.887	6.097
COFs@IM-30	5.740	70.384	5.100
CNT	3.701	84.173	4.112

Table S1 Elemental analysis results of pristine COFs, CNTs, and COFs@CNT

5. X-ray diffraction (XRD)

Fig. S1 XRD patterns of COFs@BOA, COFs@BOA-15, and COFs@BOA-30.

Fig. S2 XRD patterns of COFs@IM, COFs@IM-15, and COFs@IM-30.

Fig. S3 XRD patterns of pure CNT.

6. Nitrogen adsorption-desorption isotherms

Table S2. Structural properties of COFs, COFs@CNT composite, and CNT calculated based on nitrogen adsorption analysis.

Sample name	BET (m ² /g)
COFs@BOA	809
COFs@BOA-30	445
COFs@IM	57
COFs@IM-30	155
CNT	1,300

Fig. S4 Nitrogen adsorption-desorption isotherms of COFs@BOA.

Fig. S5 Nitrogen adsorption-desorption isotherms of COFs@BOA-30.

Fig. S6 Nitrogen adsorption-desorption isotherms of COFs@IM.

Fig. S7 Nitrogen adsorption-desorption isotherms of COFs@IM-30.

Fig. S8 Nitrogen adsorption-desorption isotherms of CNT.

7. Thermal Gravimetric Analysis

Fig. S9 The TGA curves of COFs@IM, COFs@IM-30, COFs@BOA, COFs@BOA-30, and CNT.

8. Scanning Electron Microscope

Fig. S10 SEM images of COFs@BOA

Fig. S11 SEM images of COFs@IM

Fig. S12 SEM images of CNT

9. High-Resolution Transmission Electron Micrographs

Fig. S13 HRTEM images of COFs@BOA

Fig. S14 HAADF-STEM elemental mapping images of COFs@BOA

Fig. S16 HAADF-STEM elemental mapping images of COFs@IM

Fig. S17 HAADF-STEM elemental mapping images of COFs@BOA-30

Fig. S18 HAADF-STEM elemental mapping images of COFs@IM-30

Fig. S19 HRTEM images of CNT

10. Electrochemical Performance

Fig. S20 The first four cycles of cyclic voltammograms of the COFs@BOA-30 based electrode

Fig. S21 The first four cycles of cyclic voltammograms of the COFs@BOA-15 based electrode

Fig. S22 The first four cycles of cyclic voltammograms of the COFs@BOA based electrode

Fig. S24 The first four cycles of cyclic voltammograms of the COFs@IM-30 based electrode

Fig. S25 The first four cycles of cyclic voltammograms of the COFs@IM-15 based electrode

Fig. S26 The first four cycles of cyclic voltammograms of the COFs@IM based electrode

Fig. S27 The first four cycles of cyclic voltammograms of the COFs@IM/30 based electrode

Fig. S28 Cycling performances of the COFs@BOA-30 electrode at the current density of 100 mA g⁻¹.

Fig. S29 Cycling performances of the COFs@BOA-15 electrode at the current density of 100 mA g⁻¹.

Fig. S30 Cycling performances of the pure COFs@BOA electrode at the current density of 100 mA g⁻¹.

Fig. S31 Cycling performances of the COFs@BOA/30 electrode at the current density of 100 mA g⁻¹.

Fig. S32 Cycling performances of the COFs@IM electrode at the current density of 100 mA g⁻¹.

Fig. S33 Cycling performances of the COFs@IM-15 electrode at the current density of 100 mA g^{-1} .

Fig. S34 Cycling performances of the COFs@IM/30 electrode at the current density of 100 mA g^{-1} .

Fig. S35 Cycling performances of the CNT electrode at the current density of 100 mA g⁻¹.

Fig. S36 The rate capability of the pure COFs@IM electrode at different current densities.

Fig. S37 The rate capability of the COFs@IM-15 electrode at different current densities.

Fig. S38 The rate capability of the COFs@IM/30 electrode at different current densities.

Fig. S39 The rate capability of the pure CNT electrode at different current densities.

Fig. S40 The rate capability of the COFs@BOA-30 electrode at different current densities.

Fig. S41 The rate capability of the COFs@BOA-15 electrode at different current densities.

Fig. S42 The rate capability of the pure COFs@BOA electrode at different current densities.

Fig. S43 The rate capability of the COFs@BOA/30 electrode at different current densities.

Fig. S44 Capacity contribution of COFs@BOA (based on the mass of COFs) in COFs@BOA-30

at 100 mA g⁻¹.

Fig. S45 CV curves of COFs@BOA-30 anode at different scan rates (0.2, 0.4, 0.6, 0.8, 1.0 and 2.0 mV s⁻¹).

Fig. S46 CV curves of COFs@BOA-15 anode at different scan rates (0.2, 0.4, 0.6, 0.8, 1.0 and 2.0 mV s⁻¹).

Fig. S47 CV curves of COFs@BOA anode at different scan rates (0.2, 0.4, 0.6, 0.8, 1.0 and 2.0 mV s⁻¹).

Fig. S48 CV curves of COFs@BOA/30 anode at different scan rates (0.2, 0.4, 0.6, 0.8, 1.0 and 2.0 mV s⁻¹).

Fig. S49 CV curves of COFs@IM-30 anode at different scan rates (0.2, 0.4, 0.6, 0.8, 1.0 and 2.0 mV s⁻¹).

Fig. S50 CV curves of COFs@IM-15 anode at different scan rates (0.2, 0.4, 0.6, 0.8, 1.0 and 2.0 mV s⁻¹).

Fig. S51 CV curves of pure COFs@IM anode at different scan rates (0.2, 0.4, 0.6, 0.8, 1.0 and 2.0 mV s⁻¹).

Fig. S52 CV curves of COFs@IM/30 anode at different scan rates (0.2, 0.4, 0.6, 0.8, 1.0 and 2.0 mV s⁻¹).

Fig. S53 The *b*-value of COFs@IM-30 representative reduction/oxidation peaks.

Fig. S54 The *b*-value of COFs@BOA-30 representative reduction/oxidation peaks.

Fig. S55 Capacitive and diffusion contribution of COFs@IM (a), COFs@IM-15 (b), COFs@IM-30 (c), and COFs@IM/30 (d) anode at multiple scan rates of 0.2-1.0 mV s⁻¹; Contribution of capacitance process of COFs@IM (e), COFs@IM-15 (f), COFs@IM-30 (g), and COFs@IM/30 (h) at the scan rate of 1.0 mV s⁻¹.

Fig. S56 Capacitive and diffusion contribution of COFs@BOA (a), COFs@BOA-15 (b), COFs@BOA-30 (c), and COFs@BOA/30 (d) anode at multiple scan rates of 0.2-1.0 mV s⁻¹; Contribution of capacitance process of COFs@BOA (e), COFs@BOA-15 (f), COFs@BOA-30 (g), and COFs@BOA/30 (h) at the scan rate of 1.0 mV s⁻¹.

Fig. S57 GITT curve and diffusion coefficient of the COFs@BOA-30 electrode.

11. X-ray Photoelectron Spectroscopy (XPS)

Fig. S58 XPS spectra of COFs@IM-30: (a-d) XPS spectra of the as-prepared the anode: (a) the C 1s scan; (b) the N 1s scan; (c) the O 1s scan; (d) the Li 1s scan; (e-h) XPS spectra of the lithiation of anode: (e) the C 1s scan; (f) the N 1s scan; (g) the O 1s scan; (h) the Li 1s scan; (i-l) XPS spectra of the delithiation of anode: (i) the C 1s scan; (j) the N 1s scan; (k) the O 1s scan; (l) the Li 1s scan.

Fig. S59 XPS spectra of COFs@BOA-30: (a-d) XPS spectra of the as-prepared the

anode: (a) the C 1s scan; (b) the N 1s scan; (c) the O 1s scan; (d) the Li 1s scan; (e-h) XPS spectra of the lithiation of anode: (e) the C 1s scan; (f) the N 1s scan; (g) the O 1s scan; (h) the Li 1s scan; (i-l) XPS spectra of the delithiation of anode: (i) the C 1s scan; (j) the N 1s scan; (k) the O 1s scan; (l) the Li 1s scan.

12. Proposed reversible electrochemical redox mechanism

Fig. S60 Structural evolution of COFs@BOA during the lithiation/delithiation procedure.

13. Band structures

Fig. S61 Band structures of the COFs@BOA

Fig. S62 Band structures of the COFs@IM

14. Comparison of the electrochemical performances

Table S3 Comparison of the electrochemical performances of the COFs-based carbon materials for the anode of lithium-ion batteries in the literature.

Abbreviation for COFs-based	Capacity/Cycles	Current density		D-f	
anode	(mA h g ⁻¹)	(mA g ⁻¹)	voltage range (v)	KCI.	
COF@IM-30	1100.3/150	100	0.005-3.0	This work	
COFs@BOA-30	916.0/150	100	0.005-3.0	This work	
DCB-COF-450	452/200	200	0.01-3.0	2	
PMDA-NiPc	590/600	100	0.1-3.0	3	
PMDA-NiPc-G	1290/600	100	0.1-3.0	3	
COF@CNTs	1021/500	100	0.005-3.0	4	
E-TFPB-COF	968/300	100	0.005-3.0	5	
Tp-Ta-COF	418/100	200	0.01-3.0	6	
COF@CNT-2	570/100	100	0.01-3.0	7	
Tp-OH-COF	720/-	100	0-3.0	8	
Tp-Azo-COF	513/100	100	0.01-3.0	9	
Cz-COF-1	236/400	200	0-3.0	10	
N2-COF	600/500	1000	0.05-3.0	11	
N3-COF	593/500	1000	0.05-3.0	11	
TThPP	381/2000	1000	0.005-3.0	12	

Table S4 Comparison of GITT of the COFs-based carbon materials for the anode of lithium-ion batteries in the literature.

Abbreviation for COFs-based	GITT (cm ² S ⁻¹)	Ref.	
anode			
COF@IM-30	5.74×10^{-11} to 3.63×10^{-9}	This work	
COFs@BOA-30	5.16×10^{-11} to 3.01×10^{-9}	This work	
E-FCTF	2.36×10^{-10} to 7.88×10^{-9}	13	
FCTF	3.15×10^{-12} to 7.27×10^{-11}	13	
E-CTF	2.43×10^{-11} to 5.09×10^{-10}	13	
rCTF	$8.82 imes 10^{-12}$ to $7.00 imes 10^{-11}$	14	
g-C3N4	10^{-15} - 10^{-17}	15	
Azo-CHF	10^{-11} to 10^{-7}	15	
Co-COF	$1.96 \times 10^{\text{-14}}$ to $5.79 \times 10^{\text{-13}}$	16	
S-CTF-Et	about 10 ⁻⁸	17	
S-CTF-Me	10^{-8} to 10^{-15}	17	

15. Atomistic coordinates of COFs@IM and COFs@BOA

P6/M hexagonal				
a = b = 20.9018 Å, c = 3.4460 Å				
	α=β=90	°, γ= 120°		
Atom	x/a	y/b	z/c	
01	0.51803	0.38111	0	
C2	0.58938	0.2972	0	
C3	0.62572	0.25613	0	
C4	0.59444	0.41834	0	
N5	0.62588	0.49014	0	
C6	0.43093	0.42819	0	
C7	0.50065	0.43629	0	
C8	0.5681	0.50444	0	
H9	0.52934	0.26826	0	
H10	0.38011	0.37513	0	

Table S5 Fractional atomic coordinates for the structure of AA stacking of COFs@BOA

Table S6 Fractional	l atomic coor	dinates for t	he structure of	f AA stac	king of	COFs@IM

P6/M hexagonal					
a = b = 22.9668 Å, c = 3.4304 Å					
$\alpha=\beta=90^\circ, \gamma=120^\circ$					
Atom	x/a	y/b	z/c		
C1	0.40501	0.54915	0.5		
C2	0.45649	0.52766	0.5		
C3	0.43094	0.45786	0.5		
C4	0.47235	0.42939	0.5		
05	0.56132	0.64103	0.5		
N6	0.42028	0.61165	0.5		
C7	0.37503	0.63791	0.5		
C8	0.40323	0.7078	0.5		
Н9	0.35292	0.50992	0.5		
H10	0.37702	0.42394	0.5		
H11	0.53395	0.66396	0.5		
H12	0.45735	0.73816	0.5		

Reference

1. Elton, L. R. B.; Jackson, D. F., X-Ray Diffraction and the Bragg Law. *Am. J. Phys.* **1966**, *34* (11), 1036-1038.

2. Cai, Y.-Q.; Gong, Z.-T.; Rong, Q.; Liu, J.-M.; Yao, L.-F.; Cheng, F.-X.; Liu, J.-J.; Xia, S.-B.; Guo,

H., Improved and stable triazine-based covalent organic framework for lithium storage. *Appl. Surf. Sci.* **2022**, *594*, 153481.

3. Zhao, J.; Zhou, M.; Chen, J.; Wang, L.; Zhang, Q.; Zhong, S.; Xie, H.; Li, Y., Two Birds One Stone: Graphene Assisted Reaction Kinetics and Ionic Conductivity in Phthalocyanine-Based Covalent Organic Framework Anodes for Lithium-ion Batteries. *Small* **2023**, *19* (44), e2303353.

4. Lei, Z.; Yang, Q.; Xu, Y.; Guo, S.; Sun, W.; Liu, H.; Lv, L. P.; Zhang, Y.; Wang, Y., Boosting lithium storage in covalent organic framework via activation of 14-electron redox chemistry. *Nat. Commun.* **2018**, *9* (1), 576.

Chen, X.; Li, Y.; Wang, L.; Xu, Y.; Nie, A.; Li, Q.; Wu, F.; Sun, W.; Zhang, X.; Vajtai, R.; Ajayan,
P. M.; Chen, L.; Wang, Y., High-Lithium-Affinity Chemically Exfoliated 2D Covalent Organic Frameworks. *Adv. Mater. (Weinheim, Ger.)* 2019, 31 (29), e1901640.

6. Zhao, G.; Sun, Y.; Yang, Y.; Zhang, C.; An, Q.; Guo, H., Molecular engineering regulation redox-dual-active-center covalent organic frameworks-based anode for high-performance Li storage. *EcoMat* **2022**, *4* (6), e12221.

7. Yang, X.; Lin, C.; Han, D.; Li, G.; Huang, C.; Liu, J.; Wu, X.; Zhai, L.; Mi, L., In situ construction of redox-active covalent organic frameworks/carbon nanotube composites as anodes for lithium-ion batteries. *J. Mater. Chem. A* **2022**, *10* (8), 3989-3995.

8. Zhai, L.; Li, G.; Yang, X.; Park, S.; Han, D.; Mi, L.; Wang, Y.; Li, Z.; Lee, S. Y., 30 Li+-Accommodating Covalent Organic Frameworks as Ultralong Cyclable High-Capacity Li-Ion Battery Electrodes. *Adv. Funct. Mater.* **2021**, *32* (9), 2108798.

9. Zhao, G.; Zhang, Y.; Gao, Z.; Li, H.; Liu, S.; Cai, S.; Yang, X.; Guo, H.; Sun, X., Dual Active Site of the Azo and Carbonyl-Modified Covalent Organic Framework for High-Performance Li Storage. *ACS Energy Lett.* **2020**, *5* (4), 1022-1031.

10. Feng, S.; Xu, H.; Zhang, C.; Chen, Y.; Zeng, J.; Jiang, D.; Jiang, J. X., Bicarbazole-based redoxactive covalent organic frameworks for ultrahigh-performance energy storage. *Chem. Commun. (Cambridge, U. K.)* **2017**, *53* (82), 11334-11337.

11. Bai, L.; Gao, Q.; Zhao, Y., Two fully conjugated covalent organic frameworks as anode materials for lithium ion batteries. *J. Mater. Chem. A* **2016**, *4* (37), 14106-14110.

12. Yang, H.; Zhang, S.; Han, L.; Zhang, Z.; Xue, Z.; Gao, J.; Li, Y.; Huang, C.; Yi, Y.; Liu, H.; Li, Y., High Conductive Two-Dimensional Covalent Organic Framework for Lithium Storage with Large Capacity. *ACS Appl. Mater. Interfaces* **2016**, *8* (8), 5366-75.

13. Zhang, H.; Sun, W.; Chen, X.; Wang, Y., Few-Layered Fluorinated Triazine-Based Covalent Organic Nanosheets for High-Performance Alkali Organic Batteries. *ACS Nano* **2019**, *13* (12), 14252-14261.

14. Buyukcakir, O.; Ryu, J.; Joo, S. H.; Kang, J.; Yuksel, R.; Lee, J.; Jiang, Y.; Choi, S.; Lee, S. H.; Kwak, S. K.; Park, S.; Ruoff, R. S., Lithium Accommodation in a Redox-Active Covalent Triazine Framework for High Areal Capacity and Fast-Charging Lithium-Ion Batteries. *Adv. Funct. Mater.* **2020**, *30* (36).

15. Yu, Y.; Jin, Q.; Zhu, D.; Ren, Y., Exceptional Lithium-Ion Storage Performance on an Azo-Bridged Covalent Heptazine Framework. *Adv. Funct. Mater.* **2023**, *34* (2), 2308706.

16. Wang, H.; Zou, W.; Liu, C.; Sun, Y.; Xu, Y.; Sun, W.; Wang, Y., β-Ketoenamine-Linked Covalent Organic Framework with Co Intercalation: Improved Lithium-Storage Properties and Mechanism for High-Performance Lithium-Organic Batteries. *Batteries Supercaps* **2023**, *6* (3).

17. Geng, Q.; Xu, Z.; Wang, J.; Song, C.; Wu, Y.; Wang, Y., Tailoring covalent triazine frameworks

anode for superior Lithium-ion storage via thioether engineering. Chem. Eng. J. 2023, 469, 143941.