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1. Experimental section

Materials

All reagents were obtained from commercial supplies and used as received. N-

methylpyrrolidone (99.0%), 1,3,5-trimethylbenzene (99.0%), benzimidazole (99.0%), 

1,3,5-triformylbenzene (TFB, 99.0%), 2,5-diaminohydroquinone dihydrochloride 

(DABD, 98.0%), benzene-1,3,5-triamine trihydrochloride (TAB, 98.0%), 2,5-

dihydroxyterephthalaldehyde (DHA, 98.0%), 1,4-dioxane (99.5%), acetic acid 
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(99.0%), tetrahydrofuran (THF, 99.5%), and methanol (99.9%), carbon nanotubes 

(CNT, purity:>95 wt%, OD:<2nm, length:5-30 μm) were purchased from Tansoole. 

The acetone (99.0%) was purchased from Sinopharm Chemical Reagent Limited 

Corporation. Acetylene black and polyvinylidene fluoride (PVDF) were purchased 

from Canrd.

Material Characterization

The synthesis of the samples was verified using Fourier transform infrared 

spectroscopy (FT-IR, Nicolet IS50, Thermo Fisher Scientific). The crystalline structure 

of the samples was studied using X‐ray diffractometry (XRD, Smartlab (3), Rigaku). 

The microstructure was investigated using a scanning electron microscope (SEM, Nova 

Nano SEM450, FEI) and transmission electron microscope (TEM, Talos F200X, 

Thermo Fisher Scientific). The system of Thermo Scientific K-Alpha was employed to 

obtain X‐ray photoelectron spectroscopy (XPS) spectra. The values of binding energy 

were calibrated by using C 1s peak at 284.8 eV. Nitrogen adsorption and desorption 

isotherms were measured at 77 K using a Micromeritics 3Flex. The samples were 

degassed at 120 ℃ for 10 h before the measurements. Surface areas were calculated 

from the adsorption data using Brunauer-Emmett-Teller (BET). Thermogravimetric 

analysis (TGA) was carried out on TG209 F3 by heating samples from 30 to 900 ℃ in 

a dynamic nitrogen atmosphere with a heating rate of 10 ℃∙min-1. the 13C cross-

polarization solid-state nuclear magnetic resonance (13C CP/MS NMR) spectrum was 

performed by Bruker-500. The elemental analysis was studied using a Vairo EL cube. 

The electrical conductivity was measured by four-probe conductivity measurements 

(ST2742-B) and high resistance meter measurements (ST2643) under a pressure of 20 

MPa.

Bragg's Law:1

nλ=2dsinθ

where n is the diffraction order (usually n=1), θ is measured from the surface 

normal, the wavelength λ (Cu Kα : λ=0.15406 nm), and d is the layer spacing of the 

COFs.

Density functional theory (DFT) calculation

The theoretical calculations were based on the DFT using the CASTEP, Dmol3, 
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and Reflex tools modules of Materials Studio (MS) software. The functional of 

CASTEP was chosen as Perdew-BurkeErnzerh (PBE) in generalized gradient 

approximation (GGA).

The weight ratio of COFs and CNT in COFs@CNT

The weight ratio of COFs and CNT in the COFs@CNT was investigated based on 

the N and C contents in the pristine COFs, the CNT, and the COFs@CNT, as shown in 

Table S1. The two equations can be described as follows:

PCOFs×NCOFs + PCNT×NCNT = NCOFs@CNT

PCOFs×CCOFs + PCNT×CCNT = CCOFs@CNT

Where NCOFs and CCOFs, NCNT and CCNT, NCOFs@CNT and CCOFs@CNT correspond to 

the weight percentages of N and C in pristine COFs, pristine CNT and the COFs@CNT 

composite, respectively. PCOFs and PCNT correspond to the mass percentages of COFs 

and CNT in the COFs@CNT composite.

Capacity contribution of COFs in COFs@CNT calculation

The composite capacity of COFs@CNT can be regarded as the contribution of two 

components, as described by the following equation:

CCOFs@CNT = CCOFs×PCOFs + CCNT×PCNT

where CCOFs@CNT, CCOFs, and CCNT represent the capacities of COFs@CNT, COFs, 

and CNT, respectively. PCOFs and PCNT correspond to the mass percent of COFs and 

CNT in the COFs@CNT composite.

2. Procedures for COFs Synthesis

Synthesis of COFs@BOA
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TFB (48.6 mg, 0.3 mmol) and DABD (95.8 mg, 0.45 mmol) were suspended in a 

mixture of N-methylpyrrolidone and 1,3,5-trimethylbenzene (1:1 V: V, 5 mL). After 

the mixture was sonicated for 20 min, benzimidazole (159.5 mg, 1.35 mmol) was 

added. Subsequently, the Pyrex tube was frozen at 77 K using a liquid N2 bath and 

degassed by three freeze-pump-thaw cycles, then sealed under vacuum and heated at 

120 °C for 72 hours. The resulting COFs@BOA precipitate was isolated by vacuum 

filtration and washed with THF, methanol, and acetone, then dried at 100 °C under 

vacuum for 24 hours to give the desired COFs@BOA.

Synthesis of COFs@BOA-30 and COFs@BOA-15

The COFs@BOA-30 and COFs@BOA-15 were prepared using a similar synthesis 

method. The only difference was that the CNT (COFs@BOA-30: 43.3 mg; 

COFs@BOA-15: 21.7 mg) was added at the same time as TFB (48.6 mg, 0.3 mmol) 

and DABD (95.8 mg, 0.45 mmol). The other processes were consistent with those used 

to prepare COFs@BOA.

Synthesis of COFs@IM
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TAB (69.7 mg, 0.3 mmol) and DHA (74.7 mg, 0.45 mmol) were suspended in a 

mixture of mesitylene and dioxane (1:1 V: V, 2 mL). After the mixture was sonicated 

for 20 minutes, acetic acid (6 M, 0.2 ml) was added. Subsequently, the Pyrex tube was 

frozen at 77 K using a liquid N2 bath and degassed by three freeze-pump-thaw cycles, 

then sealed under vacuum and heated at 120 °C for 72 hours. The resulting COFs@IM 

precipitate was isolated by vacuum filtration and washed with THF, methanol, and 

acetone, then dried at 100 °C under vacuum for 24 hours to give the desired COFs@IM.

Synthesis of COFs@IM-30 and COFs@IM-15

A similar synthesis method was applied to prepare the COFs@IM-30 and 

COFs@IM-15. The only difference was that adding the CNT (COFs@IM-30: 43.3 mg; 

COFs@IM-15: 21.7 mg) at the same times as adding TAB (69.7 mg, 0.3 mmol) and 

DHA (74.7 mg, 0.45 mmol). Other processes were consistent with the preparation of 

COFs@IM.

Synthesis of COFs@BOA/30 and COFs@IM/30

COFs@BOA/30 and COFs@IM/30 were synthesized through a simple physical 

mixing technique. The COFs@BOA with 70 mg (COFs@IM with 46 mg) and CNT 

with 30 mg (54 mg) were transferred to a mortar and then ground for a 30 min grind to 

obtain homogeneous composites.

3. Electrochemical measurements

Coin-type (CR2032) cells were assembled in an Ar-filled glove box (H2O < 0.1 

ppm, O2 < 0.1 ppm) with lithium metal foil as the anode and Celgard 2325 as the 

separator. The electrolyte was 1.0 M LiPF6 in a mixture of dimethyl carbonate (DMC) 

and ethylene carbonate (EC) (1:1 v/v). The active materials (COFs and COFs@CNT 
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were treated by ball milling for 8 hours) were mixed with acetylene black and 

polyvinylidene fluoride binder (PVDF) solution in a weight ratio of 6:3:1 in N-methyl-

2-pyrrolidinone (NMP) respectively. The slurry was cast on the Cu foil and dried for 

10 h at 100 °C under vacuum to remove NMP. The discharge and charge measurements 

were carried out on a Land instruments CT3001A testing system at various current 

densities of 100-2,000 mA g-1 with a cut-off voltage of 0.005-3.0 V vs Li+/Li. Cyclic 

voltammetry (CV) and electrochemical impedance spectroscopy (EIS) measurements 

were conducted using the coin cells on a CHI 760E electrochemical workstation.
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4. Elemental analysis

Table S1 Elemental analysis results of pristine COFs, CNTs, and COFs@CNT

Samples N (%) C (%) H (%)

COFs@BOA 11.818 62.225 5.164

COFs@BOA-30 9.455 69.696 5.137

COFs@IM 8.697 61.887 6.097

COFs@IM-30 5.740 70.384 5.100

CNT 3.701 84.173 4.112

5. X-ray diffraction (XRD)
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Fig. S1 XRD patterns of COFs@BOA, COFs@BOA-15, and COFs@BOA-30.
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Fig. S2 XRD patterns of COFs@IM, COFs@IM-15, and COFs@IM-30.
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Fig. S3 XRD patterns of pure CNT.
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6. Nitrogen adsorption-desorption isotherms
Table S2. Structural properties of COFs, COFs@CNT composite, and CNT calculated 
based on nitrogen adsorption analysis.

Sample name BET (m2/g)
COFs@BOA 809

COFs@BOA-30 445
COFs@IM 57

COFs@IM-30 155
CNT 1,300
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Fig. S4 Nitrogen adsorption-desorption isotherms of COFs@BOA.
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Fig. S5 Nitrogen adsorption-desorption isotherms of COFs@BOA-30.
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Fig. S6 Nitrogen adsorption-desorption isotherms of COFs@IM.
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Fig. S7 Nitrogen adsorption-desorption isotherms of COFs@IM-30.
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Fig. S8 Nitrogen adsorption-desorption isotherms of CNT.
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7. Thermal Gravimetric Analysis
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Fig. S9 The TGA curves of COFs@IM, COFs@IM-30, COFs@BOA, COFs@BOA-

30, and CNT.

8. Scanning Electron Microscope
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Fig. S10 SEM images of COFs@BOA

Fig. S11 SEM images of COFs@IM

Fig. S12 SEM images of CNT
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9. High-Resolution Transmission Electron Micrographs

Fig. S13 HRTEM images of COFs@BOA
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Fig. S14 HAADF-STEM elemental mapping images of COFs@BOA

Fig. S15 HRTEM images of COFs@IM

Fig. S16 HAADF-STEM elemental mapping images of COFs@IM
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Fig. S17 HAADF-STEM elemental mapping images of COFs@BOA-30
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Fig. S18 HAADF-STEM elemental mapping images of COFs@IM-30

Fig. S19 HRTEM images of CNT
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10. Electrochemical Performance
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Fig. S20 The first four cycles of cyclic voltammograms of the COFs@BOA-30 based electrode
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Fig. S21 The first four cycles of cyclic voltammograms of the COFs@BOA-15 based electrode
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Fig. S22 The first four cycles of cyclic voltammograms of the COFs@BOA based electrode
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Fig. S23 The first four cycles of cyclic voltammograms of the COFs@BOA/30 based electrode
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Fig. S24 The first four cycles of cyclic voltammograms of the COFs@IM-30 based electrode
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Fig. S25 The first four cycles of cyclic voltammograms of the COFs@IM-15 based electrode
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Fig. S26 The first four cycles of cyclic voltammograms of the COFs@IM based electrode
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Fig. S27 The first four cycles of cyclic voltammograms of the COFs@IM/30 based electrode
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Fig. S28 Cycling performances of the COFs@BOA-30 electrode at the current density of 100 mA 
g-1.
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Fig. S29 Cycling performances of the COFs@BOA-15 electrode at the current density of 100 mA 
g-1.
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Fig. S30 Cycling performances of the pure COFs@BOA electrode at the current density of 100 
mA g-1.
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Fig. S31 Cycling performances of the COFs@BOA/30 electrode at the current density of 100 mA 
g-1.
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Fig. S32 Cycling performances of the COFs@IM electrode at the current density of 100 mA g-1.
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Fig. S33 Cycling performances of the COFs@IM-15 electrode at the current density of 100 mA 
g-1.
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Fig. S34 Cycling performances of the COFs@IM/30 electrode at the current density of 100 mA 
g-1.
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Fig. S35 Cycling performances of the CNT electrode at the current density of 100 mA g-1.
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Fig. S36 The rate capability of the pure COFs@IM electrode at different current densities.
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Fig. S37 The rate capability of the COFs@IM-15 electrode at different current densities.
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Fig. S38 The rate capability of the COFs@IM/30 electrode at different current densities.
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Fig. S39 The rate capability of the pure CNT electrode at different current densities.
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Fig. S40 The rate capability of the COFs@BOA-30 electrode at different current densities.
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Fig. S41 The rate capability of the COFs@BOA-15 electrode at different current densities.
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Fig. S42 The rate capability of the pure COFs@BOA electrode at different current densities.
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Fig. S43 The rate capability of the COFs@BOA/30 electrode at different current densities.
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at 100 mA g-1.
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Fig. S45 CV curves of COFs@BOA-30 anode at different scan rates (0.2, 0.4, 0.6, 0.8, 1.0 and 2.0 
mV s−1).
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Fig. S46 CV curves of COFs@BOA-15 anode at different scan rates (0.2, 0.4, 0.6, 0.8, 1.0 and 2.0 
mV s−1).
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Fig. S47 CV curves of COFs@BOA anode at different scan rates (0.2, 0.4, 0.6, 0.8, 1.0 and 2.0 
mV s−1).
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Fig. S48 CV curves of COFs@BOA/30 anode at different scan rates (0.2, 0.4, 0.6, 0.8, 1.0 and 2.0 
mV s−1).
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Fig. S49 CV curves of COFs@IM-30 anode at different scan rates (0.2, 0.4, 0.6, 0.8, 1.0 and 2.0 
mV s−1).
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Fig. S50 CV curves of COFs@IM-15 anode at different scan rates (0.2, 0.4, 0.6, 0.8, 1.0 and 2.0 
mV s−1).
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Fig. S51 CV curves of pure COFs@IM anode at different scan rates (0.2, 0.4, 0.6, 0.8, 1.0 and 2.0 
mV s−1).
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Fig. S52 CV curves of COFs@IM/30 anode at different scan rates (0.2, 0.4, 0.6, 0.8, 1.0 and 2.0 
mV s−1).
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Fig. S53 The b-value of COFs@IM-30 representative reduction/oxidation peaks.
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Fig. S54 The b-value of COFs@BOA-30 representative reduction/oxidation peaks.

Fig. S55 Capacitive and diffusion contribution of COFs@IM (a), COFs@IM-15 (b), COFs@IM-
30 (c), and COFs@IM/30 (d) anode at multiple scan rates of 0.2-1.0 mV s-1; Contribution of 
capacitance process of COFs@IM (e), COFs@IM-15 (f), COFs@IM-30 (g), and COFs@IM/30 (h) 
at the scan rate of 1.0 mV s-1.
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Fig. S56 Capacitive and diffusion contribution of COFs@BOA (a), COFs@BOA-15 (b), 
COFs@BOA-30 (c), and COFs@BOA/30 (d) anode at multiple scan rates of 0.2-1.0 mV s-1; 
Contribution of capacitance process of COFs@BOA (e), COFs@BOA-15 (f), COFs@BOA-30 (g), 
and COFs@BOA/30 (h) at the scan rate of 1.0 mV s-1.
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Fig. S57 GITT curve and diffusion coefficient of the COFs@BOA-30 electrode.

11. X-ray Photoelectron Spectroscopy (XPS)
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Fig. S58 XPS spectra of COFs@IM-30: (a-d) XPS spectra of the as-prepared the 

anode: (a) the C 1s scan; (b) the N 1s scan; (c) the O 1s scan; (d) the Li 1s scan; (e-h) 

XPS spectra of the lithiation of anode: (e) the C 1s scan; (f) the N 1s scan; (g) the O 

1s scan; (h) the Li 1s scan; (i-l) XPS spectra of the delithiation of anode: (i) the C 1s 

scan; (j) the N 1s scan; (k) the O 1s scan; (l) the Li 1s scan.

Fig. S59 XPS spectra of COFs@BOA-30: (a-d) XPS spectra of the as-prepared the 
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anode: (a) the C 1s scan; (b) the N 1s scan; (c) the O 1s scan; (d) the Li 1s scan; (e-h) 

XPS spectra of the lithiation of anode: (e) the C 1s scan; (f) the N 1s scan; (g) the O 1s 

scan; (h) the Li 1s scan; (i-l) XPS spectra of the delithiation of anode: (i) the C 1s scan; 

(j) the N 1s scan; (k) the O 1s scan; (l) the Li 1s scan.

12. Proposed reversible electrochemical redox mechanism
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procedure.
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13. Band structures
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Fig. S61 Band structures of the COFs@BOA
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Fig. S62 Band structures of the COFs@IM

14. Comparison of the electrochemical performances
Table S3 Comparison of the electrochemical performances of the COFs-based carbon 
materials for the anode of lithium-ion batteries in the literature.

Abbreviation for COFs-based 

anode

Capacity/Cycles

(mA h g-1)

Current density 

(mA g-1)
Voltage range (V) Ref.

COF@IM-30 1100.3/150 100 0.005-3.0 This work

COFs@BOA-30 916.0/150 100 0.005-3.0 This work

DCB-COF-450 452/200 200 0.01-3.0 2

PMDA-NiPc 590/600 100 0.1-3.0 3

PMDA-NiPc-G 1290/600 100 0.1-3.0 3

COF@CNTs 1021/500 100 0.005-3.0 4

E-TFPB-COF 968/300 100 0.005-3.0 5

Tp-Ta-COF 418/100 200 0.01-3.0 6

COF@CNT-2 570/100 100 0.01-3.0 7

Tp-OH-COF 720/- 100 0-3.0 8

Tp-Azo-COF 513/100 100 0.01-3.0 9

Cz-COF-1 236/400 200 0-3.0 10

N2-COF 600/500 1000 0.05-3.0 11

N3-COF 593/500 1000 0.05-3.0 11

TThPP 381/2000 1000 0.005-3.0 12

Table S4 Comparison of GITT of the COFs-based carbon materials for the anode of 
lithium-ion batteries in the literature.

Abbreviation for COFs-based 

anode

GITT (cm2 S−1) Ref.

COF@IM-30 5.74 × 10−11 to 3.63 × 10−9 This work

COFs@BOA-30 5.16 × 10−11 to 3.01 × 10−9 This work

E-FCTF 2.36 × 10−10 to 7.88 × 10−9 13

FCTF 3.15 × 10−12 to 7.27 × 10−11 13

E-CTF 2.43 × 10−11 to 5.09 × 10−10 13

rCTF 8.82 × 10−12 to 7.00 × 10−11 14

g-C3N4 10−15-10−17 15

Azo-CHF 10−11 to 10−7 15

Co-COF 1.96 × 10-14 to 5.79 × 10-13 16

S-CTF-Et about 10−8 17

S-CTF-Me 10−8 to 10−15 17
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15. Atomistic coordinates of COFs@IM and COFs@BOA
Table S5 Fractional atomic coordinates for the structure of AA stacking of 
COFs@BOA

P6/M hexagonal
a = b = 20.9018 Å, c = 3.4460 Å

α=β= 90°, γ= 120°

Atom x/a y/b z/c
O1 0.51803 0.38111 0
C2 0.58938 0.2972 0
C3 0.62572 0.25613 0
C4 0.59444 0.41834 0
N5 0.62588 0.49014 0
C6 0.43093 0.42819 0
C7 0.50065 0.43629 0
C8 0.5681 0.50444 0
H9 0.52934 0.26826 0
H10 0.38011 0.37513 0

Table S6 Fractional atomic coordinates for the structure of AA stacking of COFs@IM
P6/M hexagonal

a = b = 22.9668 Å, c = 3.4304 Å
α=β= 90°, γ= 120°

Atom x/a y/b z/c
C1 0.40501 0.54915 0.5
C2 0.45649 0.52766 0.5
C3 0.43094 0.45786 0.5
C4 0.47235 0.42939 0.5
O5 0.56132 0.64103 0.5
N6 0.42028 0.61165 0.5
C7 0.37503 0.63791 0.5
C8 0.40323 0.7078 0.5
H9 0.35292 0.50992 0.5
H10 0.37702 0.42394 0.5
H11 0.53395 0.66396 0.5
H12 0.45735 0.73816 0.5
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