Supplementary Information

Atomic tuning of 3D printed carbon surface chemistry for electrocatalytic nitrite oxidation and reduction to ammonia

*Wanli Gao^a , Jan Michalička^b , and Martin Pumeraa,c,d**

^aFuture Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic ^bCentral European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic ^cFaculty of Electrical Engineering and Computer Science, VSB - Technical University of Ostrava, 17. listopadu 2172/15, 70800 Ostrava, Czech Republic ^dDepartment of Medical Research, China Medical University Hospital, China Medical University, No. 91 Hsueh-Shih Road, Taichung 40402, Taiwan E-mail: martin.pumera@ceitec.vutbr.cz

Ti content determination by inductively coupled plasma optical emission spectrometry (ICP-OES)

Before ICP-OES measurement, the $1D@TiO₂$ electrode had to be dissolved using a microwave digestion procedure. The electrode was accurately weighed on a microbalance (Radwag MYA 5.6.Y) and placed in a teflon tube. A reaction mixture consisting of 2 ml $HNO₃$, 2 ml $H₂O₂$, 5 ml HClO⁴ and 1 ml HF (all Analpure grade, Analytika s r.o., Czech Republic) was added and the tube was placed in a microwave digestion unit (Magnum II, Ertec, Poland). After 30 minutes of fourstep digestion procedure utilizing limits up to 300 °C and 42 bar, the samples were transferred into plastic tubes, diluted with demineralized water and spiked with yttrium (serving as internal standard) solution (Analytika s r.o., Czech Republic) to obtain final Y concentration 2 mg/l. The samples were subsequently analyzed by ICP-OES with a radial view of the plasma (Arcos MV, Spectro, Germany). An external calibration in the range $0 - 10$ mg/l Ti and Fe with 2 mg/l Y as an internal standard was used. Certified standard solutions Ti and Fe (multielemental, 100 mg/l each) and Y (1000 mg/l) from Analytika s r.o., Czech Republic, nitric acid (Analpure grade, Analytika s r.o., Czech Republic) and demineralized water were used to prepare the calibration solutions.

Differential scanning calorimetry (DSC)

DSC measurements were conducted using the DSC600 Thermal Analysis System (HITACHI) under a nitrogen atmosphere. Samples with a mass of \sim 3 mg were used for each DSC measurement. Each sample was heated from 20 °C to 210 °C at a heating rate of 10 °C/min to obtain the melting curve. The Fusion enthalpy and cold crystallization enthalpy (if exists) will be used to calculate the crystallinity degree of PLA [1]. The degree of crystallinity (X_c) of PLA is calculated by the following equation:

$$
X_c = \frac{\Delta H_f - \Delta H_{fc}}{\phi H_f^*} \times 100\%
$$

where ϕ is the weight fraction of PLA in the 3D-printed nanocarbon frameworks (around 86 %), ΔH_f is fusion enthalpy, ΔH_{fc} is cold crystallization enthalpy, and H_f^* is the fusion enthalpy of 100% crystalline PLA (93 J g^{-1}) .

Calculation of electrochemically active surface area (ECSA):

To determine the electrochemical double-layer capacitance (C_{DL}) , cyclic voltammetry was conducted in a non-Faradaic potential range at different scan rates. The double-layer current (i_{DL}) , scan rate (*v*), and C_{DL} exhibit a linear relationship of $i_{DL} = vC_{DL}$. The value of C_{DL} can be obtained from the slop of *i*_{DL} plotted against *v*. The average of the absolute values of the anodic and cathodic slopes is used as C_{DL} . The ECSA was then calculated using the equation $\text{ECSA} = C_{\text{DL}} / C_s$, where C_s = 22 μ F cm⁻² is for the specific capacitance of the carbon material [2].

Calculation of NH³ yield rate and the Faradaic efficiency (FE):

The NH₃ yield rate (r_{NH_3}) and FE were calculated using the following equations:

$$
r_{NH_3} = (17c_{NH_3} \times V)/(t \times S)
$$

FE = $(8F \times c_{NH_3} \times V)/Q$

where c_{ML} is the concentration of measured NH₃, V is the electrolyte volume of the cathodic compartment, t is the reaction time, S is the geometric area of working electrode, F is the Faradaic constant (96485 C mol⁻¹), and Q is the total charge passing the electrode.

Figure S1. (a) STEM-EDX point spectrum marked by the arrow in the image of (b), showing that the Ti-based impurities exist on the surface of the carbon nanotube. The Cu signal is from the TEM grid.

Figure S2. High-resolution Fe 2p core level spectrum of the 1D carbon substrate.

Figure S3. (a) DSC first heating curve of 1D carbon substrate, 100-TiO₂, 300-TiO₂, and 500-TiO₂. (b) The crystallinity degree evaluated from DSC curves in (a).

Figure S4. Conductivity test for 1D, 100-TiO₂, 300-TiO₂, and 500-TiO₂ electrodes. The electrodes are fixed between two stainless-steel rods and assembled in a Swagelok-type cell. The scan rate is 50 mV s^{-1} .

Figure S5. STEM-HAADF images of (a) 1D and (b) 500-TiO₂, showing ALD-coated TiO₂ nanoclusters on the surface of 1D carbon substrate.

Figure S6. STEM-HAADF images of two different carbon nanotubes from 100-TiO₂ electrode, and corresponding STEM-EELS maps of C-K, O-K and Ti-L signal complemented with an overlay of all three maps.

Figure S7. STEM-EELS analysis of the 500-TiO₂ electrode, showing almost continuous ALDcoated $TiO₂$ nanoclusters on the surface of the carbon nanotube.

Figure S8. (a) Chronoamperometry curves of 1D and 100-TiO₂ electrodes at -1.06 V *vs*. RHE in a solution containing only 0.5 M Na₂SO₄, and (b) corresponding UV-vis absorption spectra of the electrolysis solutions.

Figure S9. (a) Chronoamperometry curves of 1D and 100-TiO₂ electrodes at different potentials,

and (b) corresponding UV-vis absorption spectra of the electrolysis solutions.

Figure S10. Current density and charge consumption for 100-TiO₂ electrode over 7 consecutive NH³ production cycles at -1.06 V *vs*. RHE (1 hour per cycle) with refreshed electrolyte.

Figure S11. SEM images of 100-TiO₂ electrode after electrolysis cycling test.

Figure S12. Ti 2p and O 1s high-resolution spectra of 100-TiO₂ electrode after electrolysis cycling test.

Figure S13. (a) CV curves of 1D, 100-TiO₂, 300-TiO₂, and 500-TiO₂ electrodes at 50 mV s⁻¹ in the presence of 1 mM NaNO_2 in 0.5 M Na_2SO_4 electrolyte.

Figure S14. CV profiles of the (a) 1D, (c) $100-\text{TiO}_2$, (e) $300-\text{TiO}_2$, and (g) $500-\text{TiO}_2$ electrode in a non-Faradaic potential region at different scan rates. (b, d, f, and h) The corresponding anodic and cathodic currents at the center of the potential window plotted as a function of scan rate to

estimate the double-layer capacitance. The calculated ECSA values of 1D, $100-TiO₂$, $300-TiO₂$, and $500 - TiO₂$ are 8.136, 17.341, 10.273, and 8.841 cm², respectively.

Figure S15. (a) Chronoamperometry curves of PGEb and PGEe at -1.06 V *vs*. RHE, and (b)

corresponding UV-vis absorption spectra of the electrolysis solutions.

Figure S16. CV profiles of the (a) PGEb and (c) PGEe in a non-Faradaic potential region at different scan rates. (b, d) The corresponding anodic and cathodic currents at the center of the

potential window plotted as a function of scan rate to estimate the double-layer capacitance. The calculated ECSA values of PGEb and PGEe are 0.039 cm² and 0.149 cm², respectively.

Figure S17. (a) Chronoamperometry curves and (b) corresponding UV-vis absorption spectra of electrolysis solutions of 1D, $100-TiO_2$, $300-TiO_2$, and $500-TiO_2$ at -1.06 V *vs*. RHE.

References

[1] W. Gao, C. Iffelsberger, M. Pumera, Dual polymer engineering enables high-performance 3D printed Zn-organic battery cathodes, Appl. Mater. Today, 28 (2022) 101515, https://doi.org/10.1016/j.apmt.2022.101515.

[2] C.C. McCrory, S. Jung, J.C. Peters, T.F. Jaramillo, Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction, J. Am. Chem. Soc., 135 (2013) 16977-16987, https://doi.org/10.1021/ja407115p.