Supporting Information

Rapid One-pot Microwave-assisted Synthesis and Defect Engineering

of UiO-66 for Enhanced $CO₂$ Capture

Dong A. Kang^a, Amro M. O. Mohamed^c Christian Murphy^a, Andres Ramos^a, Ioannis G. Economou^c, Jinsoo Kim^d, and Hae-Kwon Jeong^{*,a,b,d}

^aArtie McFerrin Department of Chemical Engineering and ^bDepartment of Materials Science and Engineering, Texas A&M University, 3122 TAMU, College Station, TX 77843- 3122, United States

^cChemical Engineering Program, Texas A&M University at Qatar, PO Box 23874, Doha, Qatar

^dDepartment of Chemical Engineering (Integrated Engineering), Kyung Hee University, 1732 Deogyeong-daero, Yongin, Gyeonggi-do 17104, Republic of Korea

** Corresponding author*

H.-K. Jeong (e-mail address: hjeong7@tamu.edu, Phone: +1-979-862-4850, Fax: +1-979- 845-6446)

Conventional MW-assisted method

Figure S1 Schematic illustration of our one-pot rapid MW-assisted synthesis compared to conventional MW-assisted synthesis methods (i.e., autogenous temperature vs. autogenous pressure).

Metal	Radiation power	Radiation time	Reaction temperature	Pressure	BET surface area	Yield	Ref.	
precursor	(W)	(mins)	(C)	(atm)	(m^2/g)	$(\%)$		
$Zr(OC3H7)4$	$50 - 200W$	1.5			\sim 1731	$25 - 64$	This work	
ZrCl ₄	80 \rightarrow 200 (two step)	18	-	>1 <i>(autogenous)</i>	\sim 1206	78		
		92	180		\sim 1789		$\overline{2}$	
	350	$5 - 30$	$80 - 120$		\sim 1320	$45 - 91$	\mathfrak{Z}	
	130	3	110			88	$\overline{4}$	
		120	100		~1661	$80 - 90$	5	
		360	80		\sim 318	$\overline{}$	6	

Table S1. Comparison of MW-assisted synthesis methods for UiO-66 with literature.

Table S2. Detailed conditions of precursor solutions for synthesizing UiO-66.

Figure S2 Photographs of the synthesis process for UiO-66 under microwave irradiation (T_i : temperature before MW radiation and T_{end} : temperature after MW radiation).

Figure S3 Photographs of UiO-66 synthesis solutions: **(a)** before MW radiation and **(b)** after MW radiation at 200 W.

Figure S4 Photographs of time-dependent UiO-66 synthesis solution without MW radiation.

Figure S5 Synthesis yields of MW-assisted synthesized UiO-66 in this work.

Figure S6 PXRD patterns of UiO-66 synthesized by the thermal method at different synthesis temperatures.

Figure S7 Particle size of UiO-66 synthesized as a function of MW power.

- (c) 1. At T_{plateau}, the sample is assumed to be $Zr_6O_{6+x}(TA)_{6-x}$ (ideal: $Zr_6O_6(TA)_6$) after desolvation (25-100°C), dehydroxylation (200-325°C), and removal of acetate ligand (~390°C) occur (Hence, x presents linker deficiencies per Zr_6 unit (i.e., defectivity))
	- 2. A very large weight loss over a temperature range of ca. 390-525 °C due to the collapse of the MOF framework (via combustion of the TA linkers).
	- 3. At 800°C, the sample is assumed to become fully decomposed into $6ZrO₂$
	- 4. Based on the assumptions above,

$$
Wt_{plateau} = \frac{MW_{Zr_sO_{6+x}(linker)_{6-x}}}{6 \times MW_{ZrO_2}} \times 100
$$

where, MW_x presents the molecular weight of species x, and $Wt_{plateau}$ presents the normalized weight percent of a sample at $T_{plateau}$, relative to the mass of $ZrO₂$ in the TGA results.

Figure S8 (a) TGA and **(b)** DTG curves of UiO-66 synthesized at varying MWradiation power, and (c) a method to calculate linker deficiencies per Zr_6 unit (defectivity).

Figure S9 N₂ isotherms at 77K of UiO-66 synthesized at varying MW-radiation power.

MW Power	Defectivity (d)	S_{BET} (m^2/g)	V_{mic} $\text{(cm}^3\text{/g)}$	$\mathbf{V_{t}}$ $\text{(cm}^3\text{/g)}$
50 W	1.8	1731	0.638	0.850
100 W	1.1	1419	0.538	0.618
150 W	0.83	1344	0.517	0.592
200 W	0.73	1148	0.444	0.508

Table S3. Textural properties of UiO-66 synthesized at varying MW-radiation power**.**

(S_{BET} : BET surface area, V_{mic} : micropore volume, V_t : total pore volume). Defectivity (d) is defined as linker deficiencies per Zr_6 unit (see Fig. S7))

Figure S10 (a) Defectivity (d) of thermally (TH)-synthesized UiO-66 as a function of synthesis temperature, **(b)** CO_2 and N_2 pure gas isotherms at 30°C of UiO-66 synthesized by the TH method at varying synthesis temperature, **(c)** IAST CO_2 uptake at 0.15 bar and CO_2/N_2 selectivity as a function of synthesis temperature (line: CO_2 uptake (left axis), bar: CO_2/N_2 selectivity (right axis)), and **(d)** CO_2 isosteric heat of adsorption of UiO-66 by the TH method at varying synthesis temperature.

Figure S11 CO₂ adsorption isotherms of UiO-66 synthesized at varying MW power at 30 and 40℃ and their fits with virial equations: **(a)** 50 W, **(b)** 100 W, **(c)** 150 W and **(d)** 200 W (points: experimental, dashed lines: virial fitting).

Figure S12 CO₂ adsorption isotherms of UiO-66 by the TH method at varying synthesis temperature at 30 and 40 $^{\circ}$ C and their fits with virial equations: **(a)** 20 $^{\circ}$ C **(b)** 50 $^{\circ}$ C and (c) 100 °C (points: experimental, dashed lines: virial fitting).

Table S4. Comparison of CO₂ capacity and CO₂/N₂ selectivity of UiO-66 with those in literatures.

Table S5. Computational largest cavity parameter (LCD) and pore limiting diameter (LPD) for pristine UiO-66 and defective structures. The three values in each in LCD and PLD in every row provide the values for each crystallographic direction.

References

- 1. M. Taddei, P. V. Dau, S. M. Cohen, M. Ranocchiari,J. A. van Bokhoven, F. Costantino, S. Sabatini and R. Vivani, *Dalton transactions*, 2015, **44**, 14019-14026.
- 2. W. Liang, C. J. Coghlan, F. Ragon, M. Rubio-Martinez, D. M. D'Alessandro and R. Babarao, *Dalton Transactions*, 2016, **45**, 4496-4500.
- 3. T. K. Vo, V. N. Le, K. S. Yoo, M. Song, D. Kim and J. Kim, *Crystal Growth & Design*, 2019, **19**, 4949-4956.
- 4. L. H. T. Nguyen, T. T. T. Nguyen, Y. T. Dang, P. H. Tran and T. Le Hoang Doan, *Asian Journal of Organic Chemistry*, 2019, **8**, 2276-2281.
- 5. Y. Li, Y. Liu, W. Gao, L. Zhang, W. Liu, J. Lu, Z. Wang and Y.-J. Deng, *CrystEngComm*, 2014, **16**, 7037-7042.
- 6. M. Yahia, L. A. Lozano, J. M. Zamaro, C. Téllez and J. Coronas, *Separation and Purification Technology*, 2024, **330**, 125558.
- 7. G. E. Cmarik, M. Kim, S. M. Cohen and K. S. Walton, *Langmuir*, 2012, **28**, 15606- 15613.
- 8. N. C. Pham, T. K. Vo, Q. B. Nguyen, T. K. Nguyen, T. H. C. Nguyen, N. N. Dao,J. Kim and V. C. Nguyen, *Inorganic Chemistry Communications*, 2023, **158**, 111476.
- 9. A. Huang, L. Wan and J. Caro, *Materials Research Bulletin*, 2018, **98**, 308-313.
- 10. J. Yan, T.Ji, Y. Sun, S. Meng,C. Wang and Y. Liu, *Journal of Membrane Science*, 2022, **661**, 120959.