Supporting Information

Rapid One-pot Microwave-assisted Synthesis and Defect Engineering of UiO-66 for Enhanced CO₂ Capture

Dong A. Kang^a, Amro M. O. Mohamed^c Christian Murphy^a, Andres Ramos^a, Ioannis G. Economou^c, Jinsoo Kim^d, and Hae-Kwon Jeong^{*,a,b,d}

^aArtie McFerrin Department of Chemical Engineering and ^bDepartment of Materials Science and Engineering, Texas A&M University, 3122 TAMU, College Station, TX 77843-3122, United States

^cChemical Engineering Program, Texas A&M University at Qatar, PO Box 23874, Doha, Qatar

^dDepartment of Chemical Engineering (Integrated Engineering), Kyung Hee University, 1732 Deogyeong-daero, Yongin, Gyeonggi-do 17104, Republic of Korea

* Corresponding author

H.-K. Jeong (e-mail address: hjeong7@tamu.edu, Phone: +1-979-862-4850, Fax: +1-979-845-6446)

.....

Conventional MW-assisted method

.....

Figure S1 Schematic illustration of our one-pot rapid MW-assisted synthesis compared to conventional MW-assisted synthesis methods (i.e., autogenous temperature vs. autogenous pressure).

Metal	Radiation power	Radiation time	Reaction temperature	Pressure	BET surface area	Yield	Dof	
precursor	(W) (mins)		(°C)	(atm)	(m²/g)	(%)	NUI .	
$Zr(OC_3H_7)_4$	50 - 200W	1.5	-	1	~ 1731	25 - 64	This work	
ZrCl ₄	80 → 200 (two step)	18	-	> 1 (autogenous)	~ 1206	78	1	
	-	92	180		~ 1789	-	2	
	350	5 - 30	80 - 120		~ 1320	45 – 91	3	
	130	3	110		-	88	4	
	-	120	100		~ 1661	80 - 90	5	
	-	360	80		~ 318	-	6	

Table S1. Comparison of MW-assisted synthesis methods for UiO-66 with literature.

70wt% Zr(OC ₃ H ₇) ₄ solution	Zr	Linker	DMF	Acetic acid
0.60 g	1.28 mmol	TA, 0.20g	28 ml	16 ml
		(1.20 mmol)	(440 mmol)	(230 mmol)

 Table S2. Detailed conditions of precursor solutions for synthesizing UiO-66.

Figure S2 Photographs of the synthesis process for UiO-66 under microwave irradiation (T_i : temperature before MW radiation and T_{end} : temperature after MW radiation).

Figure S3 Photographs of UiO-66 synthesis solutions: (a) before MW radiation and (b) after MW radiation at 200 W.

Figure S4 Photographs of time-dependent UiO-66 synthesis solution without MW radiation.

Figure S5 Synthesis yields of MW-assisted synthesized UiO-66 in this work.

Figure S6 PXRD patterns of UiO-66 synthesized by the thermal method at different synthesis temperatures.

Figure S7 Particle size of UiO-66 synthesized as a function of MW power.

- (c) 1. At T_{plateau}, the sample is assumed to be Zr₆O_{6+x}(TA)_{6-x} (ideal: Zr₆O₆(TA)₆) after desolvation (25-100°C), dehydroxylation (200-325°C), and removal of acetate ligand (~390°C) occur (Hence, x presents linker deficiencies per Zr₆ unit (i.e., defectivity))
 - 2. A very large weight loss over a temperature range of ca. 390-525 °C due to the collapse of the MOF framework (via combustion of the TA linkers).
 - 3. At 800°C, the sample is assumed to become fully decomposed into 6ZrO₂
 - 4. Based on the assumptions above,

$$Wt_{plateau} = \frac{MW_{Zr_6O_{6+x}(linker)_{6-x}}}{6 \times MW_{ZrO_2}} \times 100$$

where, MW_x presents the molecular weight of species x, and $Wt_{plateau}$ presents the normalized weight percent of a sample at $T_{plateau}$, relative to the mass of ZrO_2 in the TGA results.

Figure S8 (a) TGA and (b) DTG curves of UiO-66 synthesized at varying MW-

radiation power, and (c) a method to calculate linker deficiencies per Zr₆ unit (defectivity).

Figure S9 N_2 isotherms at 77K of UiO-66 synthesized at varying MW-radiation power.

MW Power	Defectivity (d)	S _{BET} (m²/g)	V _{mic} (cm ³ /g)	V _t (cm ³ /g)
50 W	1.8	1731	0.638	0.850
100 W	1.1	1419	0.538	0.618
150 W	0.83	1344	0.517	0.592
200 W	0.73	1148	0.444	0.508

Table S3. Textural properties of UiO-66 synthesized at varying MW-radiation power.

(S_{BET}: BET surface area, V_{mic} : micropore volume, V_t : total pore volume). Defectivity (d) is defined as linker deficiencies per Zr₆ unit (see Fig. S7))

Figure S10 (a) Defectivity (d) of thermally (TH)-synthesized UiO-66 as a function of synthesis temperature, **(b)** CO₂ and N₂ pure gas isotherms at 30°C of UiO-66 synthesized by the TH method at varying synthesis temperature, **(c)** IAST CO₂ uptake at 0.15 bar and CO₂/N₂ selectivity as a function of synthesis temperature (line: CO₂ uptake (left axis), bar: CO₂/N₂ selectivity (right axis)), and **(d)** CO₂ isosteric heat of adsorption of UiO-66 by the TH method at varying synthesis temperature.

Figure S11 CO₂ adsorption isotherms of UiO-66 synthesized at varying MW power at 30 and 40°C and their fits with virial equations: (a) 50 W, (b) 100 W, (c) 150 W and (d) 200 W (points: experimental, dashed lines: virial fitting).

Figure S12 CO₂ adsorption isotherms of UiO-66 by the TH method at varying synthesis temperature at 30 and 40°C and their fits with virial equations: (a) 20 °C (b) 50 °C and (c) 100 °C (points: experimental, dashed lines: virial fitting).

Synthesis method	CO ₂ capacity (at 0.15 bar, mmol/g)	CO ₂ /N ₂ selectivity (ideal)	CO ₂ /N ₂ selectivity (IAST)	Temperature (°C)	Ref	
MW-assisted	0.26	24.5	41ª	30	This work	
	0.55	-	22.8ª	25	7	
	0.50	-	20 ^b	25	8	
Solvothermal	0.40	18	-	25	9	
	0.44	_	25 ^b	25	10	
(ª: at 0.15 b	 par CO ₂ / 0.85	bar N_2 and	^b : at 0.5 bar	CO ₂ /	 0.5 bar N	

Table S4. Comparison of CO_2 capacity and CO_2/N_2 selectivity of UiO-66 with those in literatures.

 Table S5. Computational largest cavity parameter (LCD) and pore limiting diameter

 (LPD) for pristine UiO-66 and defective structures. The three values in each in LCD and PLD

 in every row provide the values for each crystallographic direction.

Linker deficiency						
(per Zr ₆ node)	LCD (Å)		PLD (Å)			
0		8.452			3.785	
0.25	8.550	8.413	8.432	3.785	3.790	3.791
0.5	8.550	8.432	8.432	3.785	3.840	4.900
0.75	8.550	8.430	8.432	6.253	3.840	4.900
1	8.550	8.432	8.432	6.253	3.840	4.899
1.25	8.550	8.432	8.432	6.681	3.840	4.928
1.5	8.550	8.432	8.433	6.952	3.840	4.786
1.75	8.550	8.432	8.428	6.952	3.840	4.874
2	8.550	8.432	8.408	6.952	3.842	5.191

References

- M. Taddei, P. V. Dau, S. M. Cohen, M. Ranocchiari, J. A. van Bokhoven, F. Costantino,
 S. Sabatini and R. Vivani, *Dalton transactions*, 2015, 44, 14019-14026.
- W. Liang, C. J. Coghlan, F. Ragon, M. Rubio-Martinez, D. M. D'Alessandro and R. Babarao, *Dalton Transactions*, 2016, 45, 4496-4500.
- T. K. Vo, V. N. Le, K. S. Yoo, M. Song, D. Kim and J. Kim, *Crystal Growth & Design*, 2019, **19**, 4949-4956.
- 4. L. H. T. Nguyen, T. T. T. Nguyen, Y. T. Dang, P. H. Tran and T. Le Hoang Doan, *Asian Journal of Organic Chemistry*, 2019, **8**, 2276-2281.
- 5. Y. Li, Y. Liu, W. Gao, L. Zhang, W. Liu, J. Lu, Z. Wang and Y.-J. Deng, CrystEngComm, 2014, 16, 7037-7042.
- 6. M. Yahia, L. A. Lozano, J. M. Zamaro, C. Téllez and J. Coronas, *Separation and Purification Technology*, 2024, **330**, 125558.
- G. E. Cmarik, M. Kim, S. M. Cohen and K. S. Walton, *Langmuir*, 2012, 28, 15606-15613.
- 8. N. C. Pham, T. K. Vo, Q. B. Nguyen, T. K. Nguyen, T. H. C. Nguyen, N. N. Dao, J. Kim and V. C. Nguyen, *Inorganic Chemistry Communications*, 2023, **158**, 111476.
- 9. A. Huang, L. Wan and J. Caro, *Materials Research Bulletin*, 2018, **98**, 308-313.
- J. Yan, T. Ji, Y. Sun, S. Meng, C. Wang and Y. Liu, *Journal of Membrane Science*, 2022, 661, 120959.