SUPPORTING INFORMATION

A Z-Scheme Photosensitive MOC/g-C₃N₄ Composite Catalyst for Efficient Visible-Light Driven Half and Overall Water Splitting

Xin-Ao Li^{a†}, Li-Lin Tan^{b†}, Xiao-Lin Wang^a, Yang Liu^a, Zi-Zhan Liang^a, Jian-Feng Huang^{c,*}, Li-Min Xiao^d, and Jun-Min Liu^{a,*}

*E-mail: huangjf39@scnu.edu.cn; liujunm@mail.sysu.edu.cn

Table of Contents

1. Scheme S1. The synthesis of MOC-Q3
2. Table S1. Theoretical and actual MOC contents of $g-C_3N_4/MOC-Q3(7/9/11/13 wt\%)$
3. Table S2. Theoretical and actual IrO_2 contents of $IrO_2(2.04/1.63/1.36 \text{ wt\%})/g-C_3N_4/MOC-Q3S6$
4. Figure S1. ¹ H NMR spectra of A) ligand L-2 and B) MOC-Q3S7
5. Figure S2. ¹ H- ¹ H COSY spectrum of MOC-Q3
6. Figure S3. ¹ H DOSY spectrum of MOC-Q3
7. Figure S4. A) Full ESI-MS spectrum, and B-D) ESI-MS spectra of ion peaks for charge states
2 ⁺ , 3 ⁺ and 4 ⁺ of MOC-Q3
8. Table S3. The crystal data of MOC-Q3
9. Table S4. The bond lengths of MOC-Q3
10. Table S5. Bond angles of MOC-Q3
11. Figure S5. A) N_2 adsorption-desorption isotherms and B) pore size distributions of g-C ₃ N ₄ and
g-C ₃ N ₄ /MOC-Q3
12. Table S6. BET surface areas and pore volumes of $g-C_3N_4$ and $g-C_3N_4/MOC-Q3$ (11)
wt%)
13. Figure S6. FT-IR spectra of MOC-Q3, g-C ₃ N ₄ , and g-C ₃ N ₄ /MOC-Q3 (11wt%)S12
14. Figure S7. CV curves of A) Ferrocene and B) MOC-Q3 (0.2 mM) in CH ₃ CNS12
15. Figure S8. Normalized absorption and fluorescence emission spectra of MOC-Q3 in
DMSOS13
16. Table S7. H_2 production data of g-C ₃ N ₄ /MOC-Q3 (7/9/11/13 wt%) in 5 hS13
17. Table S8. Summarized literature data of photocatalytic water splitting by C ₃ N ₄ -based Z-scheme
systems
18. Table S9. AQY(%) values of $g-C_3N_4/MOC-Q3$ (7/9/11/13 wt%) at different
wavelengths
19. Figure S9. local potential of g-C ₃ N ₄
20. Figure S10. local potential of MOC-Q3
21. Figure S11. local potential of g-C ₃ N ₄ /MOC-Q3 model
22. Figure S12. Charge transfer between g-C ₃ N ₄ /MOC-Q3 model. Yellow region lose electron;
cyan region obtain electron. Red frames show charge loss of $g-C_3N_4$ due to NO_3^-

groups
23. Figure S13. Energy levels near Fermi level and their corresponding orbitals of the g-
C ₃ N ₄ /MOC-Q3 modelS22
24. Figure S14. A) SEM and B) TEM images of IrO ₂ /g-C ₃ N ₄ /MOC-Q3, C) PXRD, D) FT-IR
spectroscopy, and E) UV-Vis solid absorption spectroscopy of $IrO_2/g-C_3N_4/MOC-Q3$ before and
after long-term reaction
25. Figure S15. The H_2 and O_2 production performances of $IrO_2/g-C_3N_4/MOC-Q3$ composites
prepared at different calcination temperatures
26. Figure S16. The H_2 and O_2 production performances of IrO_2 (2.04/1.63/1.36 wt%)/g-
C ₃ N ₄ /MOC-Q3 composites
27. Reference

Experimental Section

Scheme S1. The synthesis of MOC-Q3.

1. Synthesis of L-1-Br. L-1-Br was prepared according to the previous literature.¹

2. Synthesis of L-2. L-1-Br (2.30 g, 3.30 mmol), Pd(PPh₃)₄ (0.84 g, 0.73 mmol), and 3pyridinylboronic acid (2.40 g, 19.80 mmol) were mixed in DMF (100 mL) in Schleck bottle, followed by adding K₂CO₃ aqueous solution (8 g, 56.1 mmol, 16 mL). The mixture was heated at 100°C for overnight under N₂, cooled down, filtered and extracted with dichloromethane. The organic extract was treated with aqueous ammonia and deionized water, dried by anhydrous sodium sulfate and filtrated. Silica-gel column chromatography (PE: EtOAc = 1:4 v/v) was used to purify the crude product and a golden solid L-2 of 1.20 g was obtained. Yield: 50.3%. ¹H NMR (400 MHz, DMSO-*d*₆) δ (ppm): 8.95 (d, *J* = 2.4 Hz, 1H), 8.51 (d, *J* = 4.7 Hz, 1H), 8.12-8.05 (m, 1H), 7.74-7.66 (m, 3H), 7.59-7.52 (m, 1H), 7.47 (dd, *J* = 8.1, 4.8 Hz, 1H), 7.17 (d, *J* = 8.3 Hz, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ (ppm): 148.34, 146.67, 146.64, 144.62, 138.91, 132.54, 130.37, 128.95, 126.77, 125.23, 124.51, 123.69, 123.62. ESI-Q-TOF: 723.1705, *m/z* ([M+H]⁺). Eelemental analysis (C₄₅H₃₀N₄S₃): Theoretical content (C 74.76%, H 4.18%, N 7.75%, S 13.31%); Actual content (C 74.72%, H 4.20%, N 7.80%, S 13.34%).

3. Synthesis of $IrO_2 \cdot xH_2O$ colloid. K_2IrCl_6 (120 mg, 0.25 mmol) and disodium hydrogen citrate (200 mg, 0.85 mmol) were mixed in deionized water (200 mL) in a Schleck bottle to give a reddish

brown solution. The pH of the mixture was adjusted to 7.5 by adding 0.25 M NaOH solution. The solution was stirred and heated at 95°C for 30 min, during which time it changed from reddish brown to light green. The pH of the solution was then measured again and adjusted to 7.5, followed by stirring for a further 30 min while maintaining the temperature at 95°C. At this stage the solution turned blue. The above steps were repeated until the pH was stabilized at 7.5, resulting in a dark blue solution. Finally, oxygen was introduced into the solution, which was stirred and heated at 95°C for a further 30 minutes, giving a dark blue colloidal IrO₂·xH₂O.

4. Characterizations. The steady-state and time-resolved photoluminescence (PL) spectra were tested on an Edinburgh FLSP980 fluorescence spectrometer. The cyclic voltammetry (CV) curves were recorded using a CH Instruments CHI760E electrochemical work station. X-ray photoelectron spectroscopy (XPS) were performed in an ultrahigh vacuum chamber (ESCALAB 250Xi) using an XR6 monochromated AlK α X-ray source (hv = 1486.6 eV) with a 900 mm spot size. The Pd contents in the samples were determined using inductively coupled plasma-atomic emission spectrometry (ICP-AES) (SPECTRO CIROS VISION, spectra range: 120-800 nm, and holographic grating: 2924 line/mm).

5. Apparent quantum yield (AQY) measurements for H₂ evolution. 20 mg Catalyst, 9 mL water and 1 mL TEOA were added into a sealed quartz bottle. The mixture was ultrasonic-dispersed and degassed by bubbling with N₂ for 30 min to degass. Then the mixture was stirred and irradiated with a monochromatic LED (Zolix, MLED4-1, λ = 425 nm, 450 nm or 515 nm), which photon flux were determined to be 1083.0 µmol h⁻¹, 1,146.7 µmol h⁻¹ and 1,312.3 µmol h⁻¹, respectively. And the H₂ yields were detected by GC. And the AQYs were calculated as the following formula (1):

$$\Phi = \frac{number \ of \ transfered \ electrons}{number \ of \ incident \ photons} \times 100\% = \frac{2 \times n(H_2)}{n(photons)} \times 100\%$$
(1)

6. Hydroxyl radical trapping experiment. 20 mg of g-C₃N₄, MOC-Q3 or g-C₃N₄/MOC-Q3 (11 wt%) was dispersed in a sealed 40 mL quartz bottle containing 10 mL aqueous solution containing 5×10^{-4} M terephthalic acid (TA) and 2×10^{-3} M NaOH. Then the mixture was stirred and irradiated under a 300 W Xenon lamp with a 420 nm cut-off filter for 1 h. After irradiation, the mixture was filtered using a membrane filter (aqueous phase), and the filtrate was used for fluorescence measurement.

 Sample
 Measured MOC content / wt%

 g-C₃N₄/MOC-Q3 (7 wt%)
 0.18

 g-C₃N₄/MOC-Q3 (9 wt%)
 0.23

 g-C₃N₄/MOC-Q3 (11 wt%)
 0.27

 g-C₃N₄/MOC-Q3 (13 wt%)
 0.33

 IrO₂/g-C₃N₄/MOC-Q3
 0.26

Table S1. Theoretical and actual MOC contents of g-C₃N₄/MOC-Q3 (7/9/11/13 wt%).

Table S2. Theoretical and actual IrO_2 contents of IrO_2 (2.04/1.63/1.36 wt%)/g-C₃N₄/MOC-Q3.

Sample	Measured IrO ₂ content / wt%
IrO ₂ (2.04 wt%)/g-C ₃ N ₄ /MOC-Q3	1.76
IrO ₂ (1.63 wt%)/g-C ₃ N ₄ /MOC-Q3	1.32
IrO ₂ (1.36 wt%)/g-C ₃ N ₄ /MOC-Q3	1.00

9.9 9.8 9.7 9.6 9.5 9.4 9.3 9.2 9.1 9.0 8.9 8.8 8.7 8.6 8.5 8.4 8.3 8.2 8.1 8.0 7 9.7.8 7.7 7.6 7.5 7.4 7.3 7.2 7.1 7.0 3.2 3.1 3.0 2.9 2.8 2.7 2.6 2.5 2.4 fl (ppm)

Figure S1. ¹H NMR spectra (400 MHz, DMSO-*d*₆) of A) ligand L-2 and B) MOC-Q3.

Figure S2. ¹H-¹H COSY spectrum (400 MHz, DMSO- d_6) of MOC-Q3.

Figure S3. ¹H DOSY spectrum (400 MHz, DMSO- d_6) of MOC-Q3.

Figure S4. A) Full ESI-MS spectrum, and B-D) ESI-MS spectra of ion peaks for charge states 2⁺, 3⁺ and 4⁺ of MOC-Q3.

MOC-Q3						
Identification code	MOC-Q3					
Empirical formula	$C_{105}H_{102}N_{14}Pd_3S_6$					
Formula weight	2071.56					
Temperature/K	240.00(10)					
Crystal system	hexagonal					
Space group	P6 ₃ /m					
a/Å	32.1234(11)					
b/Å	32.1234(11)					
c/Å	13.3475(5)					
a/°	90					
β/°	90					
$\gamma/^{\circ}$	120					
Volume/Å ³	11928.2(7)					
Z	2					
$\rho_{calc}g/cm^3$	0.577					
µ/mm ⁻¹	2.471					
F (000)	2128.0					
Radiation	Cu Ka ($\lambda = 1.54178$)					
2Θ range for data collection/°	7.346 to 81.158					
Index ranges	$-22 \le h \le 10, -22 \le k \le 10, -9 \le l \le 10$					
Reflections collected	7544					
Independent reflections	2564 [$R_{in} = 0.0397$, $R_{sigma} = 0.0491$]					
Data/restraints/parameters	2564/515/257					
Goodness-of-fit on F ²	0.955					
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.1348, wR_2 = 0.3490$					
Final R indexes [all data]	$R_1 = 0.1687, wR_2 = 0.3731$					
Largest diff. peak/hole / e Å ⁻³	0.77/-0.72					

Table S3. The crystal data of MOC-Q3.

MOC-Q3

Table S4. The bond lengths of MOC-Q3.

 MOC-Q3							
 Atom	Atom	Length/Å	Atom	Atom	Length/Å		
Pd1	N31	2.13(2)	N3	C16	1.489(10)		
Pd1	N3	2.13(2)	N1A	C5A	1.39		
Pd1	N1A1	2.060(16)	N1A	C1A	1.39		
Pd1	N1A	2.060(16)	C5A	C4A	1.39		
Pd1	N1	2.075(18)	C4A	C3A	1.39		
Pd1	N11	2.075(18)	C4A	C6A	1.464(14)		
S003	C9A	1.812(9)	C3A	C2A	1.39		
S003	C6A	1.823(9)	C2A	C1A	1.39		

S003	C6	1.80(2)	C9A	C8A	1.377(9)
S003	C9	1.78(2)	C8A	C7A	1.437(9)
N2	C132	1.431(17)	C7A	C6A	1.368(9)
N2	C13	1.431(11)	N1	N11	1.73(7)
N2	C133	1.431(16)	N1	C5	1.39
C10	C11	1.39	N1	C1	1.39
C10	C15	1.39	C5	C4	1.39
C10	C9A	1.481(14)	C4	C3	1.39
C10	C9	1.49(2)	C4	C6	1.46(2)
C11	C12	1.39	C3	C2	1.39
C12	C13	1.39	C2	C1	1.39
C13	C14	1.39	C6	C7	1.35(2)
C14	C15	1.39	C7	C8	1.43(2)
N3	C17	1.500(10)	C8	C9	1.38(2)
N3	C18	1.494(10)	C16	C161	1.478(11)

 $\frac{1.0 \qquad 0.10 \qquad 1.494(10)}{1+X, +Y, 3/2-Z; ^{2}1+Y-X, 1-X, +Z; ^{3}1-Y, +X-Y, +Z}$

MOC-Q3							
Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
N3	Pd1	N31	78.6(15)	N1A	C5A	C4A	120
N1A1	Pd1	N3	93.3(12)	C5A	C4A	C6A	117.8(17)
N1A	Pd1	N3	171.8(11)	C3A	C4A	C5A	120
N1A	Pd1	N31	93.3(12)	C3A	C4A	C6A	121.9(17)
N1A1	Pd1	N31	171.8(11)	C4A	C3A	C2A	120
N1A1	Pd1	N1A	94.8(17)	C1A	C2A	C3A	120
N1A1	Pd1	N11	22.8(13)	C2A	C1A	N1A	120
N1A	Pd1	N11	72.0(15)	C10	C9A	S003	115.6(11)
N11	Pd1	N3	116.1(13)	C8A	C9A	S003	110.9(5)
N1	Pd1	N3	165.2(13)	C8A	C9A	C10	133.5(12)
N11	Pd1	N1	49(2)	C9A	C8A	C7A	114.1(6)
C9A	S003	C6A	89.7(4)	C6A	C7A	C8A	114.4(6)
С9	S003	C6	92.3(11)	C4A	C6A	S003	122.2(14)
C132	N2	C13	118.8(11)	C7A	C6A	S003	110.8(5)
C133	N2	C13	118.8(11)	C7A	C6A	C4A	126.7(15)
C133	N2	C132	118.8(8)	N11	N1	Pd1	65.4(11)
C11	C10	C15	120	C5	N1	Pd1	118.0(15)
C11	C10	C9A	115.4(13)	C5	N1	N11	107.2(14)
C11	C10	C9	113.3(14)	C5	N1	C1	120
C15	C10	C9A	122.4(14)	C1	N1	Pd1	121.2(15)
C15	C10	C9	126.7(14)	C1	N1	N11	105.0(13)
C10	C11	C12	120	N1	C5	C4	120
C13	C12	C11	120	C5	C4	C3	120

C12 C13 N2 121.6(15) C5 C4 C6 1 C14 C13 N2 118.4(15) C3 C4 C6 11 C14 C13 C12 120 C2 C3 C4 C4	119(2) 9.4(19) 120 120
C14 C13 N2 118.4(15) C3 C4 C6 11 C14 C13 C12 120 C2 C3 C4	9.4(19) 120 120
C14 C13 C12 120 C2 C3 C4	120 120
	120
C13 C14 C15 120 C3 C2 C1	120
C14 C15 C10 120 C2 C1 N1	120
C17 N3 Pd1 109.9(15) C4 C6 S003 11	6.9(19)
C18 N3 Pd1 107.6(16) C7 C6 S003 10	8.8(16)
C18 N3 C17 108.0(9) C7 C6 C4 1	133(2)
C16 N3 Pd1 116.6(17) C6 C7 C8 1	15(2)
C16 N3 C17 107.1(10) C9 C8 C7 1	14(2)
C16 N3 C18 107.4(10) C10 C9 S003 11	6.9(16)
C5A N1A Pd1 116.5(13) C8 C9 S003 10	8.4(16)
C5A N1A C1A 120 C8 C9 C10 1	134(2)
C1A N1A Pd1 123.2(13) C161 C16 N3 11	4.1(10)

¹+X, +Y, 3/2-Z; ²1+Y-X, 1-X, +Z; ³1-Y, +X-Y, +Z

Figure S5. A) N_2 adsorption-desorption isotherms and B) pore size distributions of g-C₃N₄ and g-C₃N₄/MOC-Q3.

Table S6. BET surface areas and pore volumes of $g-C_3N_4$ and $g-C_3N_4/MOC-Q3$ (11 wt%).

	g-C ₃ N ₄	g-C ₃ N ₄ /MOC-Q3 (11 wt%)
BET surface area / m ² g ⁻¹	115.7	81.5
Total pore volume / cm ³ g ⁻¹	0.68	0.58
Microporous pore volume / cm ³ g ⁻¹	0.009	
Mesoporous pore volume / cm ³ g ⁻¹	0.68	0.58

Figure S6. FT-IR spectra of MOC-Q3, g-C₃N₄, and g-C₃N₄/MOC-Q3 (11wt%).

Figure S7. CV curves of A) Ferrocene and B) MOC-Q3 (0.2 mM) in CH₃CN. Room temperature, weep rates 50 mV s⁻¹, Ag/AgCl as reference electrode, graphite rod as counter electrode, platinum wire as working electrode, and 0.1 M tetrabutylammonium hexafluorophosphate (TBAPF₆) as support electrolyte.

Figure S8. Normalized absorption and fluorescence emission spectra of MOC-Q3 in DMSO.

Cotobust	H ₂ production	H ₂ production (5 h)	TON	TON _{[MOC-}
Cataryst	rate / mmol g ⁻¹ h ⁻¹	/ mmol g ⁻¹	I ON[Pd]	Q3]
g-C ₃ N ₄ /MOC-Q3 (7 wt%)	30.3	151.5	69,834	209,502
g-C ₃ N ₄ /MOC-Q3 (9 wt%)	41.1	205.5	73,773	221,320
g-C ₃ N ₄ /MOC-Q3 (11 wt%)	50.1	250.5	76,889	230,667
g-C ₃ N ₄ /MOC-Q3 (13 wt%)	46.3	231.5	58,165	174,494
$Me_4(en)Pd(NO_3)_2/g-C_3N_4/L-2$ (11 wt%)	14.1	70.5	21,639	
MOC-Q3	0.084	0.42	0.42	1.25

Table S7. H_2 production data of g-C₃N₄/MOC-Q3 (7/9/11/13 wt%) in 5 h.

Entry	Catalysts	Electron mediator	Mass of catalyst (mg)	Reactant solution	Cocatalyst	Light source	H_2 and O_2 evolution rate / $\mu mol\ h^{-1}\ g^{-1}$	AQY	Reference
1	C ₃ N ₄ /C-TiO ₂	Au	10	10 vol% TEOA aq.		300 W Xe lamp (>420 nm)	129 and –		ChemCatChem 2017, 9, 3752-3761
2	C ₃ N ₄ /MoO ₃	1T-MoS ₂	10	10 vol% TEOA aq.	3 wt% Pt	300 W Xe lamp (>420 nm)	513.0 and -		Nanoscale 2018, 10, 9292-9303
3	C ₃ N ₄ /CdS	rGO	20	H ₂ O/lactic acid v/v = 9:1		350 W Xe lamp (IR and UV filters)	396 and -	36.5%	Chem. Eng. J. 2017, 317, 913-924
4	C_3N_4/Fe_2O_3	rGO	40	H ₂ O	Pt	300 W Xe lamp (>300 nm)	1,090 and 530		Angew. Chem. Int. Ed. 2019 , 58, 7102-7106
5	C ₃ N ₄ /MOFs	Aromatic rings	20	10 vol% TEOA aq.	3 wt% Pt	300 W Xe lamp (320-780 nm)	1123 and –		Appl. Catal. B 2018, 220, 607-614
6	$Cd_xZn_{1-x}S/g-C_3N_4$	Au	50	0.1 M glucose aq.		300 W Xe lamp (>420 nm)	123.21 and -		Sci. Bull. 2017, 62, 602-609
7	Cd _{0.5} Zn _{0.5} S/g- C ₃ N ₄	RGO	30	0.35 M Na ₂ S/0.25 M Na ₂ SO ₃ aq.		300 W Xe lamp	23,470 and –	37.88% at 420 nm	Appl. Surf. Sci. 2018 , 447, 783-794

Table S8. Summarized literature data of photocatalytic water splitting by C_3N_4 -based Z-scheme systems.

8	Ag ₃ PO ₄ /g- C ₃ N ₄	Ag and graphene	300	AgNO3 aq. 10 g/L		30 W LED	– and 122		Appl. Surf. Sci. 2018, 430, 108-115
9	Ag ₃ PO ₄ /g- C ₃ N ₄	graphdiyne	200	H ₂ O		300 W Xe lamp (>420 nm)	– and 753.1		Carbon 2018, 132, 598-605
10	Ag ₃ PO ₄ /g- C ₃ N ₄	Ag	300	AgNO ₃ aq. 10 g/L		White light LED	– and 110.1		Appl. Surf. Sci. 2018, 430, 301-308
11	C ₃ N ₄ /Ag ₃ PO ₄ / Ag ₂ MoO ₄	Ag	50	AgNO ₃ aq. 10 g/L		30 W white LED	– and 924.6		Appl. Surf. Sci. 2018, 456, 369-378
12	g-C ₃ N ₄ /MoS ₂ / Ag ₃ PO ₄	MoS_2	300	AgNO ₃ aq. 10 g/L		White light LED	– and 232		Appl. Surf. Sci. 2019, 463, 9-17
13	C ₃ N ₄ /TiO2	None	50	10 vol% TEOA aq.		350 W Xe lamp	4128 and –		Carbon 2019, 149 , 618-626
14	C ₃ N ₄ /OD-ZnO	None	100	10 vol% TEOA aq	1 wt% Pt	300 W Xe lamp (>420 nm)	322 and –		Appl. Catal. B 2017, 206, 406-416
15	C ₃ N ₄ /WO ₃	None	50	10 vol% TEOA aq.	1 wt% Pt	300 W Xe lamp	3,120 and –		Appl. Catal. B 2017, 219, 693-704
16	$C_3N_4/W_{18}O_{49}$	None	50	10 vol% TEOA aq.	3 wt% Pt	300 W Xe lamp (>420 nm)	8597 and –	39.1% at 420 nm	Nano Energy 2017 , 40, 308-316
17	C_3N_4/α -Fe ₂ O ₃	None	100	25 vol% TEOA aq.	5 vol% Pt	300 W Xe lamp (>400 nm)	776 and –		Int. J. Hydrogen Energy 2017 , 42, 28327-28336
18	C_3N_4/α -Fe ₂ O ₃	None	50	15 vol% TEOA aq.	1 wt% Pt	350 W Xe lamp (>420 nm)	398 and –		Sol. RRL 2018, 2, 1800006
19	C ₃ N ₄ /MnO ₂	None	10 20	10 vol% TEOA aq. H2O	3 wt% Pt	300 W Xe lamp (>400 nm)	28000 and –	23.33% at 420 nm	Appl. Catal., B 2019, 241, 452-460
20	C ₃ N ₄ /CdS	None	25 25	$M_2 \odot$ Na ₂ S (0.05	1 wt% Pt	300 W Xe lamp (>420 nm)	2,276 and –	10.3% at 420	ACS Catal. 2018, 8, 2209-2217

				M) and				nm	
				Na ₂ SO3					
				(0.1 M) aq.					
21	C ₃ N ₄ /PTCDA	None	100	0.1 M AgNO ₃ aq.	Co ₃ O ₄	300 W Xe lamp (>420 nm)	- and 847	4.5% at 420 nm	Appl. Catal. B 2020, 260, 118179
22	g-C ₃ N ₄ /WO ₃	None	50	10 vol% TEOA aq.	1 wt% Pt	300 W Xe lamp (>420 nm)	400 and -		Nanotechnology 2017, 28, 164002
23	WO_3/g - C_3N_4	None	50	15 vol% TEOA aq.	Ni(OH) _x	300 W Xe lamp (>400 nm)	576 and –		Chin. J. Catal. 2017, 38, 240-252
24	g-C ₃ N ₄ /WO3	None	50	20 vol % lactic acid aq.	2 wt% Pt	350 W Xe lamp (full spectrum)	982 and –		Appl. Catal. B 2019, 243, 556-565
25	g-C ₃ N ₄ /TiO ₂	None	100	10 vol% TEOA aq.	0.1 M Pt	300 W Xe lamp (>400 nm)	1938 and –		Appl. Surf. Sci. 2018, 448, 288-296
26	$MoS_2/g-C_3N_4$	None	50	25 vol% methanol	2 wt% Pt	300 W Xe lamp (>420 nm)	577 and –		Appl. Catal. B 2018, 228, 64-74
27	CuInS ₂ /g- C ₃ N ₄	None	50	aq. 10 vol% TEOA, 0.25 M Na ₂ S, and 0.2 M Na ₂ SO ₃ aq.		300 W Xe lamp (>420 nm)	1,290 and –		ACS Appl. Mater. Interfaces 2017 , 9, 24577-24583
28	g- C ₃ N ₄ /Ag ₂ CrO ₄	None	50	75mL water and 25mL	0.6 wt% Pt	300 W Xe lamp (>420 nm)	902.1 and –		<i>Sci. Rep.</i> 2018 , 8, 16504

S16

				methanol					
				(with 10					
				mM					
				NaHCO ₃)					
29	g-C ₃ N ₄ /PSi	None	100	10 vol% TEOA aq.	3 wt% Pt	300 W Xe lamp (400 nm)	870.5 and –		J. Catal. 2017, 356, 22-31
30	g-C ₃ N ₄ /SiC	None	50	10 vol% TEOA aq.	1 wt% Pt	300 W Xe lamp (>420 nm)	182 and –		Appl. Surf. Sci. 2017, 391, 449-456
31	$\frac{MnIn_2S_4/g}{C_3N_4}$	None	50	0.35 M Na ₂ S/0.25 M Na ₂ SO ₃		300 W Xe lamp (>400 nm)	208 and —		Chem. Eng. J. 2019 , 359, 244-253
32	ZnO/ZnS/g- C ₃ N ₄	None	100	aq. 0.25 M Na ₂ S/0.25 M Na ₂ SO ₃ aq.		300 W Xe lamp	301.25 and –		Appl. Surf. Sci. 2018, 430, 293-300
33	Ag ₃ PO ₄ /g- C ₃ N ₄	None	300	H ₂ O	1 g AgNO ₃	25 W LED	- and 228.8		Appl. Catal. B 2019, 244, 240-249
34	Ag ₃ PO ₄ /g- C ₃ N ₄	None	40	0.02 M AgNO3 aq.		300 W Xe lamp (>420 nm)	– and 520	20.2% at 420 nm	Mater. Lett. 2017, 201, 66-69
				10 vol% TEOA aq.	1 wt% Pt		1,540 and –		
35	TiO_2/g - C_3N_4	None	100	NaI aq. (5 mM)	1 wt% Pt and1 wt% PtO _x	150 W Xe lamp	102.3 and 52.8	2.06% at 425 nm	Appl. Catal. B 2016, 191, 130-137
36	Zn-doped g-	None	100	H_2O	1 wt% Pt	300 W Xe lamp	2,100 and 1,050		Chin. J. Catal. 2018, 39, 472-478

C₃N₄/BiVO₄

37	α-Fe ₂ O ₃ /g-	None	10	H ₂ O	3 wt% Pt	300 W Xe lamp (>400 nm)	31400 and –	44.35% at 420 nm	Adv. Energy Mater. 2017 , 7, 1700025
	C_3N_4	None	50	10 vol% TEOA aq.	3 wt% RuO ₂	300 W Xe lamp (>400 nm)	38.2 and 19.1		
38	S-g- C ₃ N ₄ /WO _{2.72}	None	50	9 vol% TEOA aq.		300 W Xe lamp (>420 nm)	786 and –	7.6% at 420 nm	Nano Energy 2021, 81, 105671
39	Py-g-C ₃ N ₄ tube	None	20	10 vol% TEOA aq.	1 wt % Pt	300 W Xe lamp (>420 nm)	4548.4 and –	2.16% at 420 nm	Chem. Eng. J. 2021, 414, 128802
40	g-C ₃ N ₄ /NCDS	None	50	10 vol% TEOA aq.	MoS_2	300 W Xe lamp (>420 nm)	212.41 and –		Appl. Catal. B 2019, 247, 124-132
41	Ni(OH) ₂ /g- C ₃ N ₄	None	20	20 vol% TEOA aq.		300 W Xe lamp (>420 nm)	4,360 and –	8.2% at 400 nm	Appl. Catal. B 2019, 258, 117997
42	3.8-MoCN	None	5	20 vol% TEOA aq.	1 wt % Pt	300 W Xe lamp (>400 nm)	1265 and –	1.64% at 400 nm	<i>Appl. Catal. B: Environ</i> 2023, 336, 122907
43	M+U-3	None	50	10 vol% TEOA aq.	1 wt % Pt	300 W Xe lamp (>400 nm)	744 and –	21.6% at 400 nm	Appl. Catal. B: Environ. 2023 , 333, 122805
44	CN-C	None	20	10 vol% TEOA aq.	3 wt% Pt	300 W Xe lamp (>420 nm)	468.8 and –	15.56% at 385 nm	Chin. J. Catal. 2023, 50, 361-371
45	CN/CNQDs- 20–6 h	None	20	10 vol% TEOA aq.	2 wt% Pt	300 W Xe lamp (>420 nm)	3640.6 and –	6.74% at 420 nm	Appl. Catal. B: Environ 2023 , 339, 123101
46	Pt- hCN/Co(OH)2 -B-hCN	None	50	H ₂ O	3 wt%Pt and 3 wt% Co(OH)2	300 W Xe lamp (>320 nm)	1508 and 760	30.1% at 420 nm	ACS Energy Lett. 2024, 9, 1915-1922
47	HCN	None	50	10 vol% TEOA aq.	3 wt% Pt	300 W Xe lamp (>420 nm)	7840 and –	24.1% at 420 nm	Appl. Catal. B: Environ. 2024, 350, 123902.

48	B1.0CR0.5PCN	None	20	H ₂ O	1 wt % Pt	300 W Xe lamp (>420 nm)	615 and 310	2.11% at 420 nm	Chem. Eng. J. 2023, 470, 144199
49	PCN-SrTiO ₃	None	50	H ₂ O	3 wt%Pt and CoOx	300 W Xe lamp (>300 nm)	202 and 118		Chin. J. Catal. 2023, 48, 279-289
50	CoP/CoO@g- C3N4	None	50	H ₂ O	CoP and CoO	300 W Xe lamp (>420 nm)	133.2 and 67.2	0.92% at 360 nm	Appl. Catal. B: Environ. 2024, 124527
51	MOC-Q3/g- C ₃ N ₄	None	5 10	10 vol% TEOA aq. H ₂ O		300 W Xe lamp (>420 nm)	50,100 and – 77.32 and 38.06	31.6% at 425 nm	This work

Sample	AQY at 425 nm / %	AQY at 450 nm / %	AQY at 515 nm / %
g-C ₃ N ₄ /MOC-Q3 (7 wt%)	16.5	9.40	0.05
g-C ₃ N ₄ /MOC-Q3 (9 wt%)	21.9	10.3	0.07
g-C ₃ N ₄ /MOC-Q3 (11 wt%)	31.6	17.3	0.10
g-C ₃ N ₄ /MOC-Q3 (13 wt%)	23.5	12.2	0.08

5 -0 Evacuur 5.67 .30 Potential (V) -5 E_{Fermi} -10 -15 -20 |____0 5 10 15 20 Z axis (Å)

Figure S10. local potential of MOC-Q3.

Table S9. AQY(%) values of $g-C_3N_4/MOC-Q3$ (7/9/11/13 wt%) at different wavelengths.

Figure S11. Local potential of $g-C_3N_4/MOC-Q3$ model.

Figure S12. Charge transfer between $g-C_3N_4/MOC-Q3$ model. Yellow region lose electron; cyan

region obtain electron. Red frames show charge loss of $g-C_3N_4$ due to NO_3^- groups.

Figure S13. Energy levels near Fermi level and their corresponding orbitals of the g-C₃N₄/MOC-

Q3 model.

Figure S14. A) SEM and B) TEM images of $IrO_2/g-C_3N_4/MOC-Q3$, C) PXRD, D) FT-IR spectroscopy, and E) UV-Vis solid absorption spectroscopy of $IrO_2/g-C_3N_4/MOC-Q3$ before and after long-term reaction.

Figure S15. The H_2 and O_2 production performances of $IrO_2/g\text{-}C_3N_4/MOC\text{-}Q3$ composites prepared

at different calcination temperatures.

Figure S16. The H_2 and O_2 production performances of $IrO_2 (2.04/1.63/1.36 \text{ wt\%})/g-C_3N_4/MOC-Q3$ composites.

Reference

1. T.-T. Bui, L. Beouch, X. Sallenave, F. Goubard, Carbazol-N-yl and Diphenylamino End-Capped Triphenylamine-based Molecular Glasses: Synthesis, Thermal, and Optical Properties. *Tetrahedron Lett.* **2013**, *54*, 4277-4280. DOI: 10.1016/j.tetlet.2013.05.152