## **Exploring the Photoactive Properties of Promising MXenes for** Water Splitting

Diego Ontiveros, Francesc Viñes and Carmen Sousa\*

Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional de la Universitat de Barcelona (IQTCUB), c/ Martí i Franquès 1-11, 08028 Barcelona, Spain.

\**E-mail*: <u>c.sousa@ub.edu</u>

Fig. S1. Phonons spectra along the  $\Gamma \rightarrow K \rightarrow M \rightarrow \Gamma$  k-points paths for the distorted phases of the S- and Se-terminated MX enes.



Fig. S2 Phonons spectra along the  $\Gamma \rightarrow K \rightarrow M \rightarrow \Gamma$  k-points path for the Zr<sub>2</sub>CO<sub>2</sub> MXene in the excited triplet state.



**Fig. S3.** PBE0 Bandstructure and density of states (DOS) for the distorted MXenes structures, both projected onto the different atomic contributions. In grey, blue, and red are marked the TM, X, and T contributions, respectively, while in the case of the DOS, black denotes the total sum. The green arrow marks the bandgap, with its correspondent value, given in eV. The energies, *E*, also given in eV, are referenced to the Fermi level,  $E_F$ , here placed at the valence band maximum (VBM).



**Fig. S4.** VBM and conduction band minimum (CBM) alignments of the distorted chalcogen-terminated MXenes with respect to the water splitting redox potentials at pH = 0 (dashed black lines) and pH = 7 (grey dashed lines). The blue and orange bars represent the VB and CB, respectively. Since these are Janus materials, each surface has his own band alignment, the darker blue/orange, compels the average of both while the bars above and below it denote the CBM (light blue) or VBM (light orange), of the H<sub>X</sub> and H<sub>M</sub> surface, respectively.



Fig. S5. Side views of partial charge densities for the VBM (blue) and CBM (orange) for the ten studied regular MXenes.



**Fig. S6.** (a) Partial charge densities for the VBM (blue) and CBM (orange) for the 4 distorted MXenes structures. (b) Spatial overlap,  $\hat{S}_{ab}$ , percentage between the VBM and CBM charge densities for the distorted MXenes.



**Fig. S7.** (a) Total energy, and (b) band edge positions, both in eV, as a function of uniaxial strain along x and y directions, for the exemplary case of  $Y_2CCl_2$  MXene, with distinction for bands associated to photogenerated electron, e, or heavy,  $h^{\rm H}$ , or light,  $h^{\rm L}$ , holes.



**Table S1.** Charge carrier properties for the distorted MXenes, where  $m_i^*$  is the carrier effective mass along the *i* transport direction, as a fraction w.r.t the free electron.  $C_{2D,i}$  is the elastic constant along the *i* transport direction in units of N·m<sup>-1</sup>,  $E_{d,i}$  is the deformation potential constant along *x* and *y* directions, in units of eV, and  $\mu_i$  is the carrier mobility, in cm<sup>2</sup>·V<sup>-1</sup>·s<sup>-1</sup> at T = 300 K. The *e*,  $h^{\text{H}}$ , and  $h^{\text{L}}$  carriers denote the electron, heavy hole, and light hole, respectively.

| MXene                              | Carrier    | $m_x^*$ | $m_y^*$ | $C_{2D,x}$ | $C_{2D,y}$ | E <sub>d,x</sub> | $E_{d,y}$ | $\mu_x$ | $\mu_y$ |
|------------------------------------|------------|---------|---------|------------|------------|------------------|-----------|---------|---------|
| d-Sc <sub>2</sub> CS <sub>2</sub>  | е          | 5.90    | 4.73    | 84.48      | 83.81      | -0.33            | 1.77      | 530.57  | 22.75   |
|                                    | $h^{ m H}$ | 0.85    | 0.83    |            |            | 3.83             | 3.87      | 171.52  | 171.65  |
|                                    | $h^{ m L}$ | 0.54    | 0.54    |            |            | -0.85            | -0.91     | 8492.93 | 7414.90 |
| d-Y <sub>2</sub> CS <sub>2</sub>   | е          | 2.17    | 1.87    | 75.10      | 76.12      | 0.79             | 2.79      | 590.98  | 55.04   |
|                                    | $h^{ m H}$ | 1.38    | 1.48    |            |            | 4.62             | 4.25      | 38.31   | 42.70   |
|                                    | $h^{ m L}$ | 1.34    | 1.33    |            |            | 1.18             | 0.98      | 642.05  | 954.56  |
| d-Sc <sub>2</sub> CSe <sub>2</sub> | е          | 1.88    | 3.76    | 66.15      | 66.16      | -0.95            | 1.83      | 316.53  | 42.21   |
|                                    | $h^{ m H}$ | 0.71    | 0.68    |            |            | 3.18             | 3.17      | 284.10  | 295.53  |
|                                    | $h^{ m L}$ | 0.38    | 0.37    |            |            | -2.32            | -2.29     | 1868.35 | 1959.07 |
| d-Y <sub>2</sub> CSe <sub>2</sub>  | е          | 1.42    | 1.94    | 58.36      | 58.67      | 2.13             | 1.63      | 115.98  | 146.83  |
|                                    | $h^{ m H}$ | 0.92    | 0.99    |            |            | 3.19             | 3.14      | 138.07  | 134.13  |
|                                    | $h^{ m L}$ | 0.84    | 0.81    |            |            | -1.00            | -0.90     | 1784.75 | 2316.87 |

**Fig. S8.** Charge carrier mobility,  $\mu$ , in cm<sup>2</sup>·V<sup>-1</sup>·s<sup>-1</sup> for the electrons and heavy holes along the *x* (zigzag) and *y* (armchair) directions for the distorted MXenes. The orange and blue bars indicate the electron and heavy hole mobilities.



**Fig. S9.** Imaginary part of the dielectric function,  $\varepsilon_i$ , in arbitrary units, as a function of the photon energy,  $\omega$ , in eV. The dotted lines in the chalcogen-terminated MXenes represent the distorted structure values. The Zr<sub>2</sub>CO<sub>2</sub> values have been scaled down by a 2.5 factor for comparison purposes.



**Table S2.** Solar-to-hydrogen (STH) efficiency parameters, with  $\Delta \phi$  being the difference between the vacuum energies at the two surfaces of Janus MXenes,  $\chi_{H_2}$  and  $\chi_{O_2}$  being the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) overpotentials at pH = 7, respectively, all given in eV, and  $\eta_{abs}$ ,  $\eta_{cu}$ ,  $\eta_{STH}$  and  $\eta'_{STH}$  representing the efficiency of light absorption, carrier utilization, STH, and corrected STH, respectively, given in percentage.

| MXene                              | Δφ   | $\chi_{\rm H_2}$ | X02  | $\eta_{abs}$ | $\eta_{ m cu}$ | $\eta_{ m STH}$ | $\eta_{STH}^{\prime}$ |
|------------------------------------|------|------------------|------|--------------|----------------|-----------------|-----------------------|
| $Zr_2CO_2$                         | 0.00 | 0.11             | 0.92 | 8.3          | 30.3           | 2.5             | 2.5                   |
| $Sc_2CS_2$                         | 1.20 | 1.35             | 1.85 | 2.6          | 34.4           | 0.9             | 0.9                   |
| $Y_2CS_2$                          | 0.83 | 1.48             | 1.54 | 7.2          | 37.9           | 2.7             | 2.7                   |
| $Sc_2CSe_2$                        | 1.19 | 1.34             | 1.37 | 4.1          | 35.7           | 1.5             | 1.4                   |
| $Y_2CSe_2$                         | 0.91 | 1.44             | 1.45 | 6.2          | 37.2           | 2.3             | 2.3                   |
| $Sc_2CCl_2$                        | 0.00 | -0.19            | 1.44 |              |                |                 |                       |
| $Y_2CCl_2$                         | 0.00 | -0.07            | 1.27 |              |                |                 |                       |
| $Sc_2CBr_2$                        | 0.00 | -0.05            | 1.13 |              |                |                 |                       |
| $Y_2CBr_2$                         | 0.00 | -0.05            | 1.18 |              |                |                 |                       |
| $Y_2CI_2$                          | 0.00 | 0.15             | 0.56 | 46.6         | 46.0           | 21.4            | 21.4                  |
| d-Sc <sub>2</sub> CS <sub>2</sub>  | 1.31 | 1.35             | 1.73 | 7.3          | 37.9           | 2.8             | 2.7                   |
| d-Y <sub>2</sub> CS <sub>2</sub>   | 1.24 | 1.54             | 1.67 | 13.4         | 40.8           | 5.5             | 5.2                   |
| d-Sc <sub>2</sub> CSe <sub>2</sub> | 1.29 | 1.16             | 1.46 | 16.7         | 42.1           | 7.0             | 6.5                   |
| d-Y <sub>2</sub> CSe <sub>2</sub>  | 1.14 | 1.29             | 1.56 | 13.4         | 40.8           | 5.5             | 5.2                   |