**Supplementary Information** 

# Ultrathin Oxygen Deficient SnO<sub>x</sub> Films as Electron Extraction Layers for Perovskite Solar Modules

Jin-Won Lee,<sup>1),†</sup> Joshua Sraku Adu,<sup>1),2),†</sup> Raphael E. Agbenyeke,<sup>3)</sup> Jude Laverock,<sup>3)</sup> Alice Sheppard,<sup>3)</sup> Eunyoung Park,<sup>1)</sup> Youngwoong Kim,<sup>1),4)</sup> Soon Il Hong,<sup>1)</sup> Nam Joong Jeon,<sup>1),\*</sup> David J. Fermin,<sup>3),\*</sup> and Helen Hejin Park<sup>1),2),\*</sup>

- Advanced Materials Division, Korea Research Institute of Chemical Technology (KRICT), Daejeon, Republic of Korea 34114
- <sup>2)</sup> Department of Advanced Materials and Chemical Engineering, University of Science and Technology (UST), Daejeon, Republic of Korea 34113
- <sup>3)</sup> School of Chemistry, University of Bristol, Bristol BS8 1TL, United Kingdom
- <sup>4)</sup> Green and Sustainable Materials R&D Department, Korea Institute of Industrial Technol ogy (KITECH), Cheonan, Chungcheongnam-do 31056, Republic of Korea

## AUTHOR INFORMATION

<sup>†</sup> These authors contributed equally to this work.

## **Corresponding Authors**

\* E-mail: <u>hhpark@krict.re.kr</u>, <u>david.fermin@bristol.ac.uk</u>, <u>njjeon@krict.re.kr</u>

#### **S1. EXPERIMENTAL SECTION**

#### **1.1 Materials**

Materials used in the experiments include, tin oxide (Alfa), home-made formamidinium lead iodide (FAPbI<sub>3</sub>) black powder (KRICT), home-made methylammonium bromide (MAPbBr<sub>3</sub>), methylammonium chloride (MACl, Sigma-Aldrich), poly(triarylamine) (PTAA) (MS Solution), *N*,*N*-dimethylformamide (DMF; 99.8%, Sigma-Aldrich), dimethyl sulfoxide (DMSO; 99.9%, Sigma-Aldrich), chlorobenzene (99.8%, Sigma-Aldrich), toluene (99.8%, Sigma-Aldrich), 2-methoxyethanol (2-ME; 99.8%, Sigma-Aldrich), ethanol (99.9%, DUKSAN PURE CHEMICALS), and ethylacetate (99.0%, DUKSAN PURE CHEMICALS).

#### **1.2 Fabrication of perovskite unit cells**

As transparent electrodes, glass/ITO (indium tin oxide on glass) substrates were prepared by cleaning with a special detergent followed by ultra-sonication in deionized (DI) water, acetone, and isopropyl alcohol. After drying, an ALD SnO<sub>x</sub> or nanoparticle SnO<sub>x</sub> (*np*-SnO<sub>x</sub>) was first deposited onto the precleaned ITO substrate. ALD SnO<sub>x</sub> was grown at 190°C in a commercial ALD system (CN-1, Atomic Premium). The precursors used were tetrakis(dimethylamino)tin (TDMASn) and deionized H<sub>2</sub>O for the tin and oxygen sources, respectively. The conventional thermal ALD cycle consisted of a dose of TDMASn for 0.5 s, followed by Ar purge of 10 s, followed by a dose of H<sub>2</sub>O for 0.1 s, and then Ar purge of 10 s. The plasma-modified ALD cycle as shown in **Figure 1a** was grown at 190°C. The technique consisted of a dose of TDMASn for 0.5 s, followed by Ar purge of 10 s, followed by a dose of Ar plasma for 3 s which is intended to remove ligands and activate the TDMASn surface, followed by Ar purge of 10 s, followed by a dose of TDMASn for 0.5 s, followed by Ar purge of 10 s, followed by a dose of H<sub>2</sub>O for 0.1 s, and then Ar purge of 10 s, followed by Ar purge of 10 s, followed by a dose of TDMASn for 0.5 s, followed by Ar purge of 10 s. ALD SnO<sub>x</sub> films were grown for 79 cycles which is approximately 10 nm, and were post-annealed at 150°C for 1 h in air.

Nanoparticle SnO<sub>2</sub> (*np*-SnO<sub>2</sub>) solution (diluted with H<sub>2</sub>O to 2.5 wt%) were obtained from Alfa Aesar was coated by spin coating at 3000 rpm for 30 s, and the substrates were annealed on a hotplate at 150°C for 1 h. The perovskite solution was prepared by dissolving 800 mg of FAPbI<sub>3</sub>, 30 mg of MACl, and 30 mg of MAPbBr<sub>3</sub> in an DMF/DMSO (8:1 v/v) mixed solvent. The (FAPbI<sub>3</sub>)<sub>0.95</sub>(MAPbBr<sub>3</sub>)<sub>0.05</sub> perovskite solutions were spin-coated onto the ITO/SnO<sub>x</sub> substrates at 500 rpm for 5 s, 1000 rpm for 8 s, and 5000 rpm for 12 s, and the ethylacetate in the final spin-stage was dripped onto the substrate during spin coating. After that, the substrates were dried on a hotplate at 100°C for 1 h, 150°C for 4 min. PTAA solutions were prepared in toluene (10 mg/1 mL) with octylammonium bis(trifluoromethylsulfonyl)imide of 2.5 mg. PTAA solutions were spin-coated onto the ITO/SnO<sub>x</sub>/(FAPbI<sub>3</sub>)<sub>0.95</sub>(MAPbBr<sub>3</sub>)<sub>0.05</sub> substrates at 3000 rpm for 30 s. Finally, a metal electrode consisting of Au (80 nm) with an area of 9.94 mm<sup>2</sup> was deposited by thermal evaporation in a vacuum for all devices.

### **1.3 Fabrication of perovskite modules (9-stripe cells connected in series)**

The perovskite solar module composed of nine stripes in series on  $7 \times 7$  cm<sup>2</sup> glass/ITO substrates patterned by a laser patterning system (EO TECHNICS). P1 lines were patterned by scribing to separate the ITO substrate with a power of 1.4 W. As transparent electrodes, glass/ITO (indium tin oxide on glass) substrates were prepared by cleaning with a special detergent followed by ultra-sonication in deionized (DI) water, acetone, and isopropyl alcohol. After drying, an ALD SnO<sub>x</sub> or nanoparticle SnO<sub>2</sub> (*np*-SnO<sub>2</sub>) was first deposited onto the precleaned ITO substrate. ALD SnO<sub>x</sub> was grown at 190°C in a commercial ALD system (CN-1, Atomic Premium). The precursors used were tetrakis(dimethylamino)tin (TDMASn) and deionized H<sub>2</sub>O for the tin and oxygen sources, respectively. The conventional thermal ALD cycle consisted of a dose of TDMASn for 0.5 s, followed by Ar purge of 10 s, followed by a dose of H<sub>2</sub>O for 0.1 s, and then Ar purge of 10 s. The plasma-modified ALD cycle consisted of a dose of TDMASn for 0.5 s, followed by Ar purge of 10 s, followed by a dose of Ar plasma for 3 s, followed by Ar purge of 10 s, followed by a dose of TDMASn for 0.5 s, followed by a dose of H<sub>2</sub>O for 0.1 s, and then Ar purge of 10 s. ALD SnO<sub>x</sub> films were grown for 79 cycles which is approximately 10 nm, and were post-annealed at 150°C for 1 h in air.

For the modules, nanoparticle SnO<sub>x</sub> was coated by shearing (PCM-200, MITSUBISHI ELECTRIC) at 0.5 mm/s followed by thermal annealing at 100°C for 30 min. The perovskite solution was prepared by dissolving 800 mg of FAPbI<sub>3</sub>, 30 mg of MACl, and 30 mg of MAPbBr<sub>3</sub> in an DMF/DMSO (8:1 v/v) mixed solvent. And then the perovskite solution were diluted using same solvent, with volume ratio with 1:0.2 (perovskite solution : solvent). The diluted (FAPbI<sub>3</sub>)<sub>0.95</sub>(MAPbBr<sub>3</sub>)<sub>0.05</sub> perovskite solutions were spin-coated onto the ITO/SnO<sub>x</sub> substrates at 500 rpm for 5 s, 1000 rpm for 8 s, and 3000 rpm for 10 s, and the ethylacetate in the final spin-stage was dripped onto the substrate during spin coating. After that, the substrates were dried on a hotplate at 100°C for 1 h, 150°C for 4 min. PTAA solutions were prepared in toluene (10 mg/1 mL) with octylammonium bis(trifluoromethylsulfonyl)imide of 2.5 mg. PTAA solutions were spin-coated onto the ITO/SnO<sub>x</sub>/(FAPbI<sub>3</sub>)<sub>0.95</sub>(MAPbBr<sub>3</sub>)<sub>0.05</sub> substrates at 3000 rpm for 30 s. ALD SnO<sub>x</sub>/np-SnO<sub>x</sub>/perovskite/PTAA layers were coated and P2 lines were scribed to expose the bottom ITO substrate to connect the series linkages between cells with a power of 1 W. Finally, Au electrodes formed by thermal evaporation and each sub-modules were separated by laser scribing to form P3 lines with a power of 0.12 W.

**1.4 Photocurrent density vs. voltage** (*J-V*) **measurements.** Illuminated *J-V* characteristics were measured using a Keithley 2420 sourcemeter. The standard 100 mW/cm<sup>2</sup> (1 SUN) illumination was generated by a Newport Oriel Class A 91195A solar simulator using a 450 W

Xe-lamp (Oriel) with an AM 1.5 G filter, while the light intensity was calibrated by a Sireference cell certified by NREL. The *J-V* curves were measured from 1.5 V to -0.2 V along the reverse scan direction, with a step voltage and scan speed fixed at 10 mV and 150 mV/s, respectively. All devices were measured with a metal mask with an active area of 0.094 cm<sup>2</sup>.

**1.5 Damp heat test (85°C and 85% relative humidity).** A climatic test was conducted in a chamber (C 4-340 E series, Votschtechnik), and was carried out in a chamber set to a constant temperature (85°C) and constant humidity (85%). The efficiency of the PSCs was measured under illumination at AM 1.5 G after removing the devices from the chamber and cooling them down to room temperature.

**1.6 Energy-filtered photoemission electron microscopy (EF-PEEM) analysis.** Energyfiltered photoemission electron microscopy (EF-PEEM) was performed under UHV conditions (base pressure of  $2 \times 10^{-11}$  mbar) in the Bristol Ultraquiet NanoESCA Laboratory. Prior to the analysis, the samples were sputtered with 0.5 kV Ar<sup>+</sup> ions (5 x 10<sup>-5</sup> mbar) at 45° for 2 minutes (total sputter flux of approximately 9 µA minutes) in a separate preparation chamber to remove surface contaminants. Following preparation, the samples were transferred into the EF-PEEM chamber equipped with a monochromated He I (21.2 eV) excitation light source. The measurements were carried out with an extraction field of 12 kV, 37.6 µm field of view, and at 50 eV pass energy (corresponding to a nominal instrument resolution of 100 meV). A 150 µm contrast aperture was inserted into the back focal plane to improve lateral resolution.



Figure S1. AFM images of the surfaces of the *np*-SnO<sub>2</sub>, 0 W, 100 W, 200 W, and 300 W.



**Figure S2.** *J-V* characteristics of the photovoltaic device with PMALD  $SnO_x$  layer (200 W) under 1 SUN for reverse and forward scans.

**Table S1.** The photovoltaic device parameters of PMALD  $SnO_x$  (200 W) under forward and reverse scans.

|         | $V_{oc}(\mathbf{V})$ | $J_{SC}$ (mA/cm <sup>2</sup> ) | FF (%) | η (%) |
|---------|----------------------|--------------------------------|--------|-------|
| Forward | 1.11                 | 23.6                           | 79.4   | 21.0  |
| Reverse | 1.13                 | 23.7                           | 81.5   | 21.8  |

**Table S2.** Photovoltaic parameters. Average perovskite solar-cell performance values for with and without (reference) PMALD  $SnO_x$  electron extraction layers deposited with various plasma power.

|           | $J_{SC}$ (mA/cm <sup>2</sup> ) | $V_{OC}\left(\mathbf{V} ight)$ | FF (%)         | η (%)        | $R_{SH} \left( \Omega \cdot \mathrm{cm}^2 \right)$ | $R_S(\Omega \cdot \mathrm{cm}^2)$ |
|-----------|--------------------------------|--------------------------------|----------------|--------------|----------------------------------------------------|-----------------------------------|
| Reference | $23.4\pm0.3$                   | $1.07\pm0.03$                  | $77.2\pm0.9$   | $19.4\pm0.6$ | $1.3\pm1.8\times10^4$                              | $3.6\pm 0.4$                      |
| 0 W       | $23.6\pm0.3$                   | $1.11\pm0.00$                  | $79.1\pm 0.4$  | $20.7\pm0.3$ | $0.5\pm0.3\times10^4$                              | $3.0\pm0.1$                       |
| 100 W     | $23.3\pm0.1$                   | $1.11\pm0.01$                  | $79.1 \pm 1.0$ | $20.4\pm0.4$ | $1.7\pm1.5\times10^4$                              | $2.9\pm0.2$                       |
| 200 W     | $23.4\pm0.3$                   | $1.13\pm0.00$                  | $80.2\pm0.9$   | $21.1\pm0.4$ | $1.3\pm1.5\times10^4$                              | $2.8\pm0.1$                       |
| 300 W     | $23.2\pm0.1$                   | $0.98 \pm 0.08$                | $68.5\pm3.7$   | $15.6\pm1.4$ | $0.5\pm0.1\times10^4$                              | $6.2\pm0.7$                       |



**Figure S3.** Current vs. voltage (*I-V*) scans of the glass/ITO/SnO<sub>x</sub>/Au stacks featuring nanoparticle SnO<sub>2</sub> films (*np*-SnO<sub>2</sub>) and SnO<sub>x</sub> layers by thermal ALD, PEALD, and PMALD with varying plasma power. These measurements clearly show that the conductance of *np*-SnO<sub>2</sub> spin coated films, thermal ALD and PEALD deposited SnO<sub>x</sub> obtained with different oxygen plasma powers are very similar (98.2 ± 5.0 mS). On the other hand, PMALD films show an increase in conductance with increasing plasma power from 137.9 mS (100 W) to 143.6 mS (200 W). Increasing the plasma power to 300 W leads to a decrease in the SnO<sub>x</sub> conductance to 86.7 mS.



**Figure S4.** Steady-state photoluminescence (PL) (**a**) and time-resolved PL spectroscopy (**b**) of glass/ITO/ETL/perovskite samples with *np*-SnO<sub>2</sub> (Reference) and 200W PMALD SnO<sub>x</sub>. The PL intensity of the perovskite decreased for the PMALD SnO<sub>x</sub> with 200 W, in comparison to the reference case, strongly suggesting a more efficient electron extraction. The TRPL data was fitted to a double exponential decay with the fast decay ( $\tau_1$ ), associated with interfacial recombination of free carriers, and the slow decay ( $\tau_2$ ), linked to radiative decay. The TRPL decay times  $\tau_1$  and  $\tau_2$  are 301.3 and 109.2 ns, respectively, for the *np*-SnO<sub>2</sub> reference, whereas the decay times drop to 252.5 and 85.7 ns for the PMALD SnO<sub>x</sub> case with 200 W. Such reduction in the TRPL decay times indicate fast electron transfer from the perovskite film into the PMALD SnO<sub>x</sub> film, hence greatly suppressed carrier recombination, leading to enhanced  $V_{OC}$ .<sup>1</sup> The enhanced electron transfer from the perovskite film to the PMALD SnO<sub>x</sub> is possibly caused by reduced trap density in the perovskite<sup>2-7</sup> and the enhanced conductivity in the PMALD SnO<sub>x</sub> compared to the *np*-SnO<sub>2</sub> reference.

**Table S3. Photovoltaic parameters.** The photovoltaic device parameters of PMALD  $SnO_x$  (200 W) with thickness optimization.

| PMALD SnO <sub>x</sub> 200 W         | $J_{SC}$ (mA/cm <sup>2</sup> ) | Voc (V) | <b>FF</b> (%) | η (%) |
|--------------------------------------|--------------------------------|---------|---------------|-------|
| 0 nm ( <i>np</i> -SnO <sub>2</sub> ) | 23.4                           | 1.10    | 77.2          | 19.9  |
| 5 nm                                 | 23.2                           | 1.10    | 79.7          | 20.2  |
| 10 nm                                | 23.6                           | 1.10    | 82.2          | 21.3  |
| 15 nm                                | 23.3                           | 1.10    | 81.1          | 20.7  |
| 20 nm                                | 23.3                           | 1.10    | 79.1          | 20.2  |



**Figure S5.** Photovoltaic performance depending on thickness variation. Current density vs. voltage (*J*-*V*) scans of PMALD  $SnO_x$  with varying film thickness.

|                             | $J_{SC}$ (mA/cm <sup>2</sup> ) | $V_{oc}(\mathbf{V})$ | FF (%) | η (%) | $R_{SH}(\Omega \cdot \mathrm{cm}^2)$ | $R_{S}(\Omega \cdot \mathrm{cm}^{2})$ |
|-----------------------------|--------------------------------|----------------------|--------|-------|--------------------------------------|---------------------------------------|
| <i>np</i> -SnO <sub>2</sub> | 2.3                            | 11.1                 | 71.0   | 17.9  | $1.3 \times 10^{5}$                  | $5.2 \times 10^2$                     |
| 200W PMALD                  | 2.4                            | 11.4                 | 74.8   | 20.1  | $7.1 \times 10^{5}$                  | $4.5 \times 10^{2}$                   |

**Table S4.** Photovoltaic performance parameters of 5 cm  $\times$  5 cm modules with a *np*-SnO<sub>2</sub> layer (Reference) and a plasma-modified ALD SnO<sub>x</sub> layer (200 W) under 1 SUN.

| ETL                                   | HTL   | Active<br>area<br>(cm <sup>2</sup> ) | V <sub>oc</sub><br>(V) | $J_{SC}$ (mA/cm <sup>2</sup> ) | FF<br>(%) | η (%) | Ref.                                                                                   |
|---------------------------------------|-------|--------------------------------------|------------------------|--------------------------------|-----------|-------|----------------------------------------------------------------------------------------|
| SnO <sub>2</sub>                      | Spiro | 15.03                                | 8.37                   | 3.17                           | 77.97     | 20.71 | Angew. Chem.Int. Ed.<br>2024, 63, e2023161. <sup>8</sup>                               |
| $SnO_2$                               | Spiro | 48.00                                | 11.00                  | -                              | 69.00     | 18.80 | Journal <b>2023</b> , 456,<br>140894. <sup>9</sup>                                     |
| TiO <sub>2</sub>                      | PTAA  | 45.60                                | 16.07                  | 1.52                           | 75.35     | 18.45 | Nat. Comm. <b>2022</b> , 89. <sup>10</sup>                                             |
| TiO <sub>2</sub>                      | PTAA  | 30.24                                | -                      | -                              | -         | 20.99 | Joule <b>2022</b> , 6, 1689. <sup>11</sup>                                             |
| TiO <sub>2</sub>                      | Spiro | 20.00                                | 12.15                  | 2.29                           | 77.90     | 21.67 | Science <b>2022</b> , 375, 302. <sup>12</sup>                                          |
| TiO <sub>2</sub>                      | Spiro | 24.63                                | 10.16                  | 2.75                           | 82.00     | 22.87 | Nat. Nanotech. <b>2022</b> , 17, 598. <sup>13</sup>                                    |
| -                                     | PTAA  | 27.14                                | 8.715                  | 2.83                           | 75.41     | 18.60 | Nat. Energy <b>2021</b> , 6, 633. <sup>14</sup>                                        |
| -                                     | PTAA  | 18<br>(aperture)                     | 5.809                  | 4.25                           | 78.00     | 19.3  | Science <b>2021</b> , 373, 902. <sup>15</sup>                                          |
| TiO <sub>2</sub>                      | PTAA  | 112                                  | 7.64                   | 2.51                           | 72.09     | 13.82 | Joule <b>2021</b> , 5, 481-<br>494. <sup>16</sup>                                      |
| TiO <sub>2</sub>                      | Spiro | 23.27                                | -                      | -                              | 78.5      | 20.75 | Energy Environ. Sci. <b>2021</b> , 14, 4903. <sup>17</sup>                             |
| TiO <sub>2</sub>                      | PTAA  | 42.8                                 | 16.05                  | 1.49                           | 70.9      | 17.05 | Nano Energy, <b>2021</b> , <i>82</i> , p.105685. <sup>18</sup>                         |
| $\mathrm{TiO}_2$                      | Spiro | 52                                   | 12.03                  | -                              | 54.9      | 11.6  | Solar Energy Materials<br>and Solar Cells, <b>2021</b> ,<br>230, 111189. <sup>19</sup> |
| TiO <sub>2</sub><br>/SnO <sub>2</sub> | Spiro | 21                                   | 6.71                   | 3.68                           | 73.44     | 18.13 | Joule <b>2020</b> , 4, 1035. <sup>20</sup>                                             |
| SnO <sub>2</sub>                      | Spiro | 13.8                                 | -                      | -                              | -         | 13.1  | Solar Energy Materials<br>and Solar Cells, <b>2018</b> ,<br>185, 136. <sup>21</sup>    |
| $SnO_2$                               | PTAA  | 16.07                                | 6.54                   | 3.30                           | 69.00     | 14.89 | Nature<br>Communications, <b>2018</b> ,<br>9, 4609. <sup>22</sup>                      |
| TiO <sub>2</sub>                      | Spiro | 36.1                                 | 10.2                   | 1.97                           | 75.7      | 15.7  | Nature, <b>2017</b> , 550(7674), pp.92-95. <sup>23</sup>                               |
| $TiO_2$                               | PTAA  | 40                                   | 10.5                   | 2.10                           | 70.16     | 15.5  | J. Mater. Chem. A, <b>2016</b> , 4, 17636-17642. <sup>24</sup>                         |
| SnO <sub>2</sub>                      | PTAA  | 23.2                                 | 11.3                   | 2.4                            | 74.8      | 20.1  | This work                                                                              |

**Table S5.** Reports on the efficiency of perovskite solar modules.



**Figure S6. Module dark** *J-V* **curves.** 5 cm  $\times$  5 cm modules with a *np*-SnO<sub>2</sub> layer (Reference) and upon including a 200 W PMALD SnO<sub>x</sub> electron extraction layer.

#### References

- Q. Liu, X. Zhang, C. Li, H. Lu, Z. Weng, Y. Pan, W. Chen, X. -C. Hang, Z. Sun, Y. Zhan, *Appl. Phys. Lett.* 2019, **115**, 143903.
- J. Jiang, Q. Wang, Z. Jin, X. Zhang, J. Lei, H. Bin, Z. -G. Zhang, Y. Li, S. Liu, Adv. Energy Mater. 2018, 8, 1701757.
- M. Ding, L. Sun, X. Chen, T. Luo, T. Ye, C. Zhao, W. Zhang, H. Chang, J. Mater. Sci. 2019, 54, 12000.
- T. Niu, J. Lu, R. Munir, J. Li, D. Barrit, X. Ahang, H. Hu, Z. Yang, A. Amassian, K. Zhao, S. Liu, *Adv. Mater.* 2018, **30**, 1706576.
- X. Meng, J. Lin, X. Liu, X. He, Y. Wang, T. Noda, T. Wu, X. Yang, L. Han, *Adv. Mater*. 2019, **31**, 1903721.
- S. Song, E. Y. Park, B. S. Ma, D. J. Kim, H. H. Park, Y. Y. Kim, S. S. Shin, N. J. Jeon, T. -S. Kim, J. Seo, *Adv. Energy Mater.* 2021, **11**, 2003382.
- M. T. Mbumba, D. M. Malouangou, J. M. Tsiba, M. W. Akram, L. Bai, Y. Yang, M. Guli, *J. Mater. Chem. C* 2021, 9, 14047-14064.
- H. Yang, T. Xu, W. Chen, Y. Wu, X. Guo, Y. Shen, C. Ding, X. Chen, H. Chen, J. Ding, X. Wu, G. Zeng, Z. Zhang, Y. Li, Y. Li, *Angew. Chem.Int. Ed.* 2024, 63, e2023161.
- P. Lv, Y. Yang, N. Li, Y. Zhang, M. Hu, B. Huang, Y. Zhu, Y. Wang, J. Pan, S. Wang,
   B. Zhang, F. Huang, Y. -B. Cheng, J. Lu, *Chemical Engineering Journal* 2023, 456, 140894.
- H. Zhang, K. Darabi, N. Y. Nia, A. Krishna, P. Ahlawat, B. Guo, M. H. S. Almalki, T. –S. Su, D. Ren, V. Bolnykh, L. A. Castriotta, M. Zendehdel, L. Pan, S. S. Alonso, R. Li, S. M. Zakeeruddin, A. Hagfeldt, U. Rothlisberger, A. D. Carlo, A. Amassian, M. Gratzel, *Nat. Comm.* 2022. 89.

- J. Xia, Y. Zhang, C. Xiao, K. G. Brooks, M. Chen, J. Luo, H. Yang, N. I. D. Klipfel, J. Zou, Y. Shi, X. Yao, J. Chen, J. M. Luther, H. Lin, A. M. Asiri, C. Jia, M. K. Nazeeruddin, *Joule* 2022, 6, 1689.
- M. Kim, J. Jeong, H. Lu, T. K. Lee, F. T. Eickemeyer, Y. Liu, I. W. Choi, S. J. Choi, Y. Jo, H. –B. Kim, S. -I. Mo, Y. -K. Kim, H. Lee, N. G. An, S. Cho, W. R. Tress, S. M. Zakeeruddin, A. Hagfeldt, J. Y. Kim, M. Gratzel, D. S. Kim, *Science* 2022, 375, 302.
- Y. Ding, B. Ding, H. Kanda, O. J. Usiobo, T. Gallet, Z. Yang, Y. Liu, H. Huang, J. Sheng, C. Liu, Y. Yang, V. I. E. Queloz, X. Zhang, J. N. Audinot, A. Redinger, W. Dang, E. Mosconic, W. Luo, F. D. Angelis, M. Wang, P. Dorflinger, M. Armer, V. Schmid, R. Wang, K. G. Brooks, J. Wu, V. Dyakonov, G. Yang, S. Dai, P. J. Dyson, M. K. Nazeeruddin, *Nat. Nanotech.* 2022, **17**, 598.
- 14. Y. Deng, S. Xu, S. Chen, X. Xia, J. Zhao, J. Huang, *Nat. Energy* 2021, 6, 633.
- 15. S. Chen, X. Dai, S. Xu, H. Jiao, L. Zhao, J. Huang, *Science* 2021, **373**, 902.
- J. H. Heo, F. Zhang, C. Xiao, S. J. Heo, J. K. Park, J. J. Berry, K. Zhu, S. H. Im, *Joule* 2021, 5, 481-494.
- J. Zhu, S. Park, O. Y. Gong, C. Sohn, Z. Li, Z. Zhang, B. Jo, W. Kim, G. S. Han, D. H.
   Kim, T. K. Ahn, J. Lee, H. S. Jung, *Energy Environ. Sci.* 2021, 14, 4903.
- N. Y. Nia, M. Zendehdel, M. Abdi-Jalebi, L. A. Castriotta, F. U. Kosasih, E. Lamanna,
   M. M. Abolhasani, Z. Zheng, Z. Andaji-Garmaroudi, K. Asadi, G. Divitini, C. Ducati,
   R. H. Friend, A. D. Carlo, *Nano Energy* 2021, 82, p.105685.
- M. Fievez, P. J. S. Rana, Koh, T. M. Manceau, J. H. Lew, N. F. Jamaludin, B. Ghosh,
   A. Bruno, S. Cros, S. Berson, S. G. Mhaisalkar, W. L. Leong, *Solar Energy Materials* and Solar Cells 2021, 230, 111189.
- 20. J. Li, H. Wang, X. Y. Chin, H. A. Dewi, K. Vergeer, T. W. Goh, J. W. M. Lim, J. H. Lew, K. P. Loh, C. Soci, T. C. Sum, H. J. Bolink, N. Mathews, S. Mhaisalkar, A.

Bruno, Joule 2020, 4, 1035.

- E. Calabro, F. Matteocci, A. L. Palma, L. Vesce, B. Taheri, L. Carlini, I. Pis, S. Nappini, J. Dagar, C. Battocchio, T. M. Brown, A. D. Carlo, *Solar Energy Materials and Solar Cells* 2018, 185, 136.
- T. Bu, J. Li, F. Zheng, W. Chen, X. Wen, Z. Ku, Y. Peng, J. Zhong, Y. -B. Cheng, F. Huang, *Nature Communications* 2018, 9, 4609.
- 23. H. Chen, F. Ye, W. Tang, J. He, M. Yin, Y. Wang, F. Xie, E. Bi, X. Yang, M. Gratzel,
  L. Han, *Nature* 2017, 550(7674), pp.92-95.
- 24. J. H. Heo, M. H. Lee, M. H. Jang, S. H. Im, J. Mater. Chem. A 2016, 4, 17636-17642.