Supplementary Information

Ultrathin Oxygen Deficient SnO*^x* Films as Electron Extraction Layers for Perovskite Solar Modules

Jin-Won Lee,1),† Joshua Sraku Adu,1),2),† Raphael E. Agbenyeke,3) Jude Laverock,3) Alice Sheppard,3) Eunyoung Park,1) Youngwoong Kim,1),4) Soon Il Hong,1) Nam Joong Jeon,1), David J. Fermin,3),* and Helen Hejin Park1),2),**

- ¹⁾ Advanced Materials Division, Korea Research Institute of Chemical Technology (KRICT), Daejeon, Republic of Korea 34114
- ²⁾ Department of Advanced Materials and Chemical Engineering, University of Science and Technology (UST), Daejeon, Republic of Korea 34113
- 3) School of Chemistry, University of Bristol, Bristol BS8 1TL, United Kingdom
- 4) Green and Sustainable Materials R&D Department, Korea Institute of Industrial Technol ogy (KITECH), Cheonan, Chungcheongnam-do 31056, Republic of Korea

AUTHOR INFORMATION

† These authors contributed equally to this work.

Corresponding Authors

* E-mail: [hhpark@krict.re.kr,](mailto:hhpark@krict.re.kr) [david.fermin@bristol.ac.uk,](mailto:david.fermin@bristol.ac.uk) njjeon@krict.re.kr

S1. EXPERIMENTAL SECTION

1.1 Materials

Materials used in the experiments include, tin oxide (Alfa), home-made formamidinium lead iodide (FAPbI3) black powder (KRICT), home-made methylammonium bromide (MAPbBr3), methylammonium chloride (MACl, Sigma-Aldrich), poly(triarylamine) (PTAA) (MS Solution), *N,N*-dimethylformamide (DMF; 99.8%, Sigma-Aldrich), dimethyl sulfoxide (DMSO; 99.9%, Sigma-Aldrich), chlorobenzene (99.8%, Sigma-Aldrich), toluene (99.8%, Sigma-Aldrich), 2-methoxyethanol (2-ME; 99.8%, Sigma-Aldrich), ethanol (99.9%, DUKSAN PURE CHEMICALS), and ethylacetate (99.0%, DUKSAN PURE CHEMICALS).

1.2 Fabrication of perovskite unit cells

As transparent electrodes, glass/ITO (indium tin oxide on glass) substrates were prepared by cleaning with a special detergent followed by ultra-sonication in deionized (DI) water, acetone, and isopropyl alcohol. After drying, an ALD SnO_x or nanoparticle SnO_x (*np*-SnO_{*x*}) was first deposited onto the precleaned ITO substrate. ALD SnO_x was grown at 190^oC in a commercial ALD system (CN-1, Atomic Premium). The precursors used were tetrakis(dimethylamino)tin (TDMASn) and deionized H2O for the tin and oxygen sources, respectively. The conventional thermal ALD cycle consisted of a dose of TDMASn for 0.5 s, followed by Ar purge of 10 s, followed by a dose of H_2O for 0.1 s, and then Ar purge of 10 s. The plasma-modified ALD cycle as shown in **Figure 1a** was grown at 190°C. The technique consisted of a dose of TDMASn for 0.5 s, followed by Ar purge of 10 s, followed by a dose of Ar plasma for 3 s which is intended to remove ligands and activate the TDMASn surface, followed by Ar purge of 10 s, followed by a dose of TDMASn for 0.5 s, followed by Ar purge of 10 s, followed by a dose of H₂O for 0.1 s, and then Ar purge of 10 s. ALD SnO_x films were grown for 79 cycles which is approximately 10 nm, and were post-annealed at 150°C for 1 h in air.

Nanoparticle SnO₂ (*np*-SnO₂) solution (diluted with H₂O to 2.5 wt%) were obtained from Alfa Aesar was coated by spin coating at 3000 rpm for 30 s, and the substrates were annealed on a hotplate at 150°C for 1 h. The perovskite solution was prepared by dissolving 800 mg of FAPbI₃, 30 mg of MACl, and 30 mg of MAPbBr₃ in an DMF/DMSO (8:1 v/v) mixed solvent. The $(FAPbI₃)_{0.95}(MAPbBr₃)_{0.05}$ perovskite solutions were spin-coated onto the ITO/SnO_x substrates at 500 rpm for 5 s, 1000 rpm for 8 s, and 5000 rpm for 12 s, and the ethylacetate in the final spin-stage was dripped onto the substrate during spin coating. After that, the substrates were dried on a hotplate at 100°C for 1 h, 150°C for 4 min. PTAA solutions were prepared in toluene (10 mg/1 mL) with octylammonium bis(trifluoromethylsulfonyl)imide of 2.5 mg. PTAA solutions were spin-coated onto the ITO/SnO_x/(FAPbI₃)_{0.95}(MAPbBr₃)_{0.05} substrates at 3000 rpm for 30 s. Finally, a metal electrode consisting of Au (80 nm) with an area of 9.94 mm² was deposited by thermal evaporation in a vacuum for all devices.

1.3 Fabrication of perovskite modules (9-stripe cells connected in series)

The perovskite solar module composed of nine stripes in series on 7×7 cm² glass/ITO substrates patterned by a laser patterning system (EO TECHNICS). P1 lines were patterned by scribing to separate the ITO substrate with a power of 1.4 W. As transparent electrodes, glass/ITO (indium tin oxide on glass) substrates were prepared by cleaning with a special detergent followed by ultra-sonication in deionized (DI) water, acetone, and isopropyl alcohol. After drying, an ALD SnO_x or nanoparticle SnO_2 ($np\text{-} \text{SnO}_2$) was first deposited onto the precleaned ITO substrate. ALD SnO*^x* was grown at 190°C in a commercial ALD system (CN-1, Atomic Premium). The precursors used were tetrakis(dimethylamino)tin (TDMASn) and deionized H2O for the tin and oxygen sources, respectively. The conventional thermal ALD

cycle consisted of a dose of TDMASn for 0.5 s, followed by Ar purge of 10 s, followed by a dose of H2O for 0.1 s, and then Ar purge of 10 s. The plasma-modified ALD cycle consisted of a dose of TDMASn for 0.5 s, followed by Ar purge of 10 s, followed by a dose of Ar plasma for 3 s, followed by Ar purge of 10 s, followed by a dose of TDMASn for 0.5 s, followed by Ar purge of 10 s, followed by a dose of H_2O for 0.1 s, and then Ar purge of 10 s. ALD SnO_x films were grown for 79 cycles which is approximately 10 nm, and were post-annealed at 150°C for 1 h in air.

For the modules, nanoparticle SnO_x was coated by shearing (PCM-200, MITSUBISHI ELECTRIC) at 0.5 mm/s followed by thermal annealing at 100° C for 30 min. The perovskite solution was prepared by dissolving 800 mg of FAPbI3, 30 mg of MACl, and 30 mg of MAPbBr₃ in an DMF/DMSO (8:1 v/v) mixed solvent. And then the perovskite solution were diluted using same solvent, with volume ratio with 1:0.2 (perovskite solution : solvent). The diluted (FAPbI3)0.95(MAPbBr3)0.05 perovskite solutions were spin-coated onto the ITO/SnO*^x* substrates at 500 rpm for 5 s, 1000 rpm for 8 s, and 3000 rpm for 10 s, and the ethylacetate in the final spin-stage was dripped onto the substrate during spin coating. After that, the substrates were dried on a hotplate at 100°C for 1 h, 150°C for 4 min. PTAA solutions were prepared in toluene (10 mg/1 mL) with octylammonium bis(trifluoromethylsulfonyl)imide of 2.5 mg. PTAA solutions were spin-coated onto the ITO/SnO_x/(FAPbI₃)_{0.95}(MAPbBr₃)_{0.05} substrates at 3000 rpm for 30 s. ALD SnO*x*/*np*-SnO*x*/perovskite/PTAA layers were coated and P2 lines were scribed to expose the bottom ITO substrate to connect the series linkages between cells with a power of 1 W. Finally, Au electrodes formed by thermal evaporation and each sub-modules were separated by laser scribing to form P3 lines with a power of 0.12 W.

1.4 Photocurrent density vs. voltage (*J***-***V***) measurements.** Illuminated *J*-*V* characteristics were measured using a Keithley 2420 sourcemeter. The standard 100 mW/cm² (1 SUN) illumination was generated by a Newport Oriel Class A 91195A solar simulator using a 450 W Xe-lamp (Oriel) with an AM 1.5 G filter, while the light intensity was calibrated by a Sireference cell certified by NREL. The *J*-*V* curves were measured from 1.5 V to -0.2 V along the reverse scan direction, with a step voltage and scan speed fixed at 10 mV and 150 mV/s, respectively. All devices were measured with a metal mask with an active area of 0.094 cm^2 .

1.5 Damp heat test (85^oC and 85% relative humidity). A climatic test was conducted in a chamber (C 4-340 E series, Votschtechnik), and was carried out in a chamber set to a constant temperature (85°C) and constant humidity (85%). The efficiency of the PSCs was measured under illumination at AM 1.5 G after removing the devices from the chamber and cooling them down to room temperature.

1.6 Energy-filtered photoemission electron microscopy (EF-PEEM) analysis. Energyfiltered photoemission electron microscopy (EF-PEEM) was performed under UHV conditions (base pressure of 2×10^{-11} mbar) in the Bristol Ultraquiet NanoESCA Laboratory. Prior to the analysis, the samples were sputtered with 0.5 kV Ar^+ ions $(5 \text{ x } 10^{-5} \text{ mbar})$ at 45° for 2 minutes (total sputter flux of approximately 9 µA minutes) in a separate preparation chamber to remove surface contaminants. Following preparation, the samples were transferred into the EF-PEEM chamber equipped with a monochromated He I (21.2 eV) excitation light source. The measurements were carried out with an extraction field of 12 kV, 37.6 µm field of view, and at 50 eV pass energy (corresponding to a nominal instrument resolution of 100 meV). A 150 µm contrast aperture was inserted into the back focal plane to improve lateral resolution.

Figure S1. AFM images of the surfaces of the *np*-SnO2, 0 W, 100 W, 200 W, and 300 W.

Figure S2. *J-V* characteristics of the photovoltaic device with PMALD SnO_x layer (200 W) under 1 SUN for reverse and forward scans.

Table S1. The photovoltaic device parameters of PMALD SnO*^x* (200 W) under forward and reverse scans.

	V_{oc} (V	J_{SC} (mA/cm ²)	FF(%)	(%)
Forward		23.6	79.4	21.0
Reverse	1.13	23 T Δ .,	81.5	21.8

Table S2. Photovoltaic parameters. Average perovskite solar-cell performance values for with and without (reference) PMALD SnO_x electron extraction layers deposited with various plasma power.

			$J_{SC}(\text{mA/cm}^2)$ $V_{OC}(\text{V})$ $FF(\%)$ $\eta(\%)$ $R_{SH}(\Omega \cdot \text{cm}^2)$ $R_S(\Omega \cdot \text{cm}^2)$	
			Reference 23.4 ± 0.3 1.07 ± 0.03 77.2 ± 0.9 19.4 ± 0.6 $1.3 \pm 1.8 \times 10^4$ 3.6 ± 0.4	
0 W			23.6 ± 0.3 1.11 ± 0.00 79.1 ± 0.4 20.7 ± 0.3 $0.5 \pm 0.3 \times 10^4$ 3.0 ± 0.1	
100W			23.3 ± 0.1 1.11 ± 0.01 79.1 ± 1.0 20.4 ± 0.4 $1.7 \pm 1.5 \times 10^4$ 2.9 ± 0.2	
200 W			23.4 ± 0.3 1.13 ± 0.00 80.2 ± 0.9 21.1 ± 0.4 $1.3 \pm 1.5 \times 10^4$ 2.8 ± 0.1	
300 W			23.2 ± 0.1 0.98 ± 0.08 68.5 ± 3.7 15.6 ± 1.4 $0.5 \pm 0.1 \times 10^4$ 6.2 ± 0.7	

Figure S3. Current vs. voltage (*I*-*V*) scans of the glass/ITO/SnO*x*/Au stacks featuring nanoparticle $SnO₂$ films ($np\text{-}SnO₂$) and SnO_x layers by thermal ALD, PEALD, and PMALD with varying plasma power. These measurements clearly show that the conductance of *np*-SnO² spin coated films, thermal ALD and PEALD deposited SnO*^x* obtained with different oxygen plasma powers are very similar (98.2 ± 5.0 mS). On the other hand, PMALD films show an increase in conductance with increasing plasma power from 137.9 mS (100 W) to 143.6 mS (200 W). Increasing the plasma power to 300 W leads to a decrease in the SnO*^x* conductance to 86.7 mS.

Figure S4. Steady-state photoluminescence (PL) (**a**) and time-resolved PL spectroscopy (**b**) of glass/ITO/ETL/perovskite samples with *np-*SnO² (Reference) and 200W PMALD SnO*x*. The PL intensity of the perovskite decreased for the PMALD SnO_x with 200 W, in comparison to the reference case, strongly suggesting a more efficient electron extraction. The TRPL data was fitted to a double exponential decay with the fast decay (τ_l) , associated with interfacial recombination of free carriers, and the slow decay (*τ2*), linked to radiative decay. The TRPL decay times τ_1 and τ_2 are 301.3 and 109.2 ns, respectively, for the np -SnO₂ reference, whereas the decay times drop to 252.5 and 85.7 ns for the PMALD SnO_x case with 200 W. Such reduction in the TRPL decay times indicate fast electron transfer from the perovskite film into the PMALD SnO*^x* film, hence greatly suppressed carrier recombination, leading to enhanced V_{OC} ¹. The enhanced electron transfer from the perovskite film to the PMALD SnO_x is possibly caused by reduced trap density in the perovskite²⁻⁷ and the enhanced conductivity in the PMALD SnO_x compared to the *np*-SnO₂ reference.

Table S3. Photovoltaic parameters. The photovoltaic device parameters of PMALD SnO*^x* (200 W) with thickness optimization.

PMALD $SnOx 200 W$	J_{SC} (mA/cm ²)	V_{OC} (V)	FF(%)	η (%)
0 nm (<i>np</i> -SnO ₂)	23.4	1.10	77.2	19.9
5 nm	23.2	1.10	79.7	20.2
10 nm	23.6	1.10	82.2	21.3
15 nm	23.3	1.10	81.1	20.7
20 nm	23.3	1.10	79.1	20.2

Figure S5. Photovoltaic performance depending on thickness variation. Current density vs. voltage (*J*-*V*) scans of PMALD SnO*^x* with varying film thickness.

					$J_{SC}(\text{mA/cm}^2)$ $V_{OC}(V)$ $FF(%)$ η (%) $R_{SH}(\Omega \cdot \text{cm}^2)$ $R_S(\Omega \cdot \text{cm}^2)$	
$np\text{-}SnO_2$	2.3	- 11.1	71.0	17.9	1.3×10^{5} 5.2×10^{2}	
200W PMALD	24	11.4	74.8	20.1	7.1×10^3 4.5×10^2	

Table S4. Photovoltaic performance parameters of 5 cm \times 5 cm modules with a *np*-SnO₂ layer (Reference) and a plasma-modified ALD SnO*^x* layer (200 W) under 1 SUN.

ETL	HTL	Active area $\text{(cm}^2\text{)}$	V_{oc} (V)	$J_{\rm sc}$ (mA/cm ²)	FF (%)	η (%)	Ref.
SnO ₂	Spiro	15.03	8.37	3.17	77.97	20.71	Angew. Chem.Int. Ed. 2024, 63, e2023161. ⁸
SnO ₂	Spiro	48.00	11.00		69.00	18.80	Chemical Engineering Journal 2023, 456, 140894.9
TiO ₂	PTAA	45.60	16.07	1.52	75.35	18.45	Nat. Comm. 2022, 89. ¹⁰
TiO ₂	PTAA	30.24				20.99	Joule 2022, 6, 1689. ¹¹
TiO ₂	Spiro	20.00	12.15	2.29	77.90	21.67	Science 2022, 375, 302. ¹²
TiO ₂	Spiro	24.63	10.16	2.75	82.00	22.87	Nat. Nanotech. 2022, 17, 598.13
$\qquad \qquad -$	PTAA	27.14	8.715	2.83	75.41	18.60	Nat. Energy 2021, 6, 633.14
	PTAA	18 (aperture)	5.809	4.25	78.00	19.3	Science 2021, 373, 902. ¹⁵
TiO ₂	PTAA	112	7.64	2.51	72.09	13.82	Joule 2021, 5, 481- 494.16
TiO ₂	Spiro	23.27	$\qquad \qquad -$	$\overline{}$	78.5	20.75	Energy Environ. Sci. 2021 , 14, 4903. ¹⁷
TiO ₂	PTAA	42.8	16.05	1.49	70.9	17.05	Nano Energy, 2021, 82, p.105685.18
TiO ₂	Spiro	52	12.03		54.9	11.6	Solar Energy Materials and Solar Cells, 2021, 230, 111189. ¹⁹
TiO ₂ /SnO ₂	Spiro	21	6.71	3.68	73.44	18.13	Joule 2020, 4, 1035. ²⁰
SnO ₂	Spiro	13.8				13.1	Solar Energy Materials and Solar Cells, 2018, 185, 136. ²¹ Nature
SnO ₂	PTAA	16.07	6.54	3.30	69.00	14.89	Communications, 2018, 9, 4609.22
TiO ₂	Spiro	36.1	10.2	1.97	75.7	15.7	Nature, 2017, 550(7674), pp.92-95. ²³
TiO ₂	PTAA	40	10.5	2.10	70.16	15.5	J. Mater. Chem. A, 2016, 4, 17636-17642. ²⁴
SnO ₂	PTAA	23.2	11.3	2.4	74.8	20.1	This work

Table S5. Reports on the efficiency of perovskite solar modules.

Figure S6. Module dark *J***-***V* **curves. 5 cm** \times **5 cm modules with a** *np***-SnO₂ layer** (Reference) and upon including a 200 W PMALD SnO*^x* electron extraction layer.

References

- 1. Q. Liu, X. Zhang, C. Li, H. Lu, Z. Weng, Y. Pan, W. Chen, X. -C. Hang, Z. Sun, Y. Zhan, *Appl. Phys. Lett*. 2019, **115**, 143903.
- 2. J. Jiang, Q. Wang, Z. Jin, X. Zhang, J. Lei, H. Bin, Z. -G. Zhang, Y. Li, S. Liu, *Adv. Energy Mater*. 2018, **8**, 1701757.
- 3. M. Ding, L. Sun, X. Chen, T. Luo, T. Ye, C. Zhao, W. Zhang, H. Chang, *J. Mater. Sci.* 2019, **54**, 12000.
- 4. T. Niu, J. Lu, R. Munir, J. Li, D. Barrit, X. Ahang, H. Hu, Z. Yang, A. Amassian, K. Zhao, S. Liu, *Adv. Mater.* 2018, **30**, 1706576.
- 5. X. Meng, J. Lin, X. Liu, X. He, Y. Wang, T. Noda, T. Wu, X. Yang, L. Han, *Adv. Mater.* 2019, **31**, 1903721.
- 6. S. Song, E. Y. Park, B. S. Ma, D. J. Kim, H. H. Park, Y. Y. Kim, S. S. Shin, N. J. Jeon, T. -S. Kim, J. Seo, *Adv. Energy Mater.* 2021, **11**, 2003382.
- 7. M. T. Mbumba, D. M. Malouangou, J. M. Tsiba, M. W. Akram, L. Bai, Y. Yang, M. Guli, *J. Mater. Chem. C* 2021, **9**, 14047-14064.
- 8. H. Yang, T. Xu, W. Chen, Y. Wu, X. Guo, Y. Shen, C. Ding, X. Chen, H. Chen, J. Ding, X. Wu, G. Zeng, Z. Zhang, Y. Li, Y. Li, *Angew. Chem.Int. Ed.* 2024, **63**, e2023161.
- 9. P. Lv, Y. Yang, N. Li, Y. Zhang, M. Hu, B. Huang, Y. Zhu, Y. Wang, J. Pan, S. Wang, B. Zhang, F. Huang, Y. -B. Cheng, J. Lu, *Chemical Engineering Journal* 2023, **456**, 140894.
- 10. H. Zhang, K. Darabi, N. Y. Nia, A. Krishna, P. Ahlawat, B. Guo, M. H. S. Almalki, T. –S. Su, D. Ren, V. Bolnykh, L. A. Castriotta, M. Zendehdel, L. Pan, S. S. Alonso, R. Li, S. M. Zakeeruddin, A. Hagfeldt, U. Rothlisberger, A. D. Carlo, A. Amassian, M. Gratzel, *Nat. Comm.* 2022. **89**.
- 11. J. Xia, Y. Zhang, C. Xiao, K. G. Brooks, M. Chen, J. Luo, H. Yang, N. I. D. Klipfel, J. Zou, Y. Shi, X. Yao, J. Chen, J. M. Luther, H. Lin, A. M. Asiri, C. Jia, M. K. Nazeeruddin, *Joule* 2022, **6**, 1689.
- 12. M. Kim, J. Jeong, H. Lu, T. K. Lee, F. T. Eickemeyer, Y. Liu, I. W. Choi, S. J. Choi, Y. Jo, H. –B. Kim, S. -I. Mo, Y. -K. Kim, H. Lee, N. G. An, S. Cho, W. R. Tress, S. M. Zakeeruddin, A. Hagfeldt, J. Y. Kim, M. Gratzel, D. S. Kim, *Science* 2022, **375**, 302.
- 13. Y. Ding, B. Ding, H. Kanda, O. J. Usiobo, T. Gallet, Z. Yang, Y. Liu, H. Huang, J. Sheng, C. Liu, Y. Yang, V. I. E. Queloz, X. Zhang, J. N. Audinot, A. Redinger, W. Dang, E. Mosconic, W. Luo, F. D. Angelis, M. Wang, P. Dorflinger, M. Armer, V. Schmid, R. Wang, K. G. Brooks, J. Wu, V. Dyakonov, G. Yang, S. Dai, P. J. Dyson, M. K. Nazeeruddin, *Nat. Nanotech.* 2022, **17**, 598.
- 14. Y. Deng, S. Xu, S. Chen, X. Xia, J. Zhao, J. Huang, *Nat. Energy* 2021, **6**, 633.
- 15. S. Chen, X. Dai, S. Xu, H. Jiao, L. Zhao, J. Huang, *Science* 2021, **373**, 902.
- 16. J. H. Heo, F. Zhang, C. Xiao, S. J. Heo, J. K. Park, J. J. Berry, K. Zhu, S. H. Im, *Joule* 2021, **5**, 481-494.
- 17. J. Zhu, S. Park, O. Y. Gong, C. Sohn, Z. Li, Z. Zhang, B. Jo, W. Kim, G. S. Han, D. H. Kim, T. K. Ahn, J. Lee, H. S. Jung, *Energy Environ. Sci*. 2021, **14**, 4903.
- 18. N. Y. Nia, M. Zendehdel, M. Abdi-Jalebi, L. A. Castriotta, F. U. Kosasih, E. Lamanna, M. M. Abolhasani, Z. Zheng, Z. Andaji-Garmaroudi, K. Asadi, G. Divitini, C. Ducati, R. H. Friend, A. D. Carlo, *Nano Energy* 2021, **82**, p.105685.
- 19. M. Fievez, P. J. S. Rana, Koh, T. M. Manceau, J. H. Lew, N. F. Jamaludin, B. Ghosh, A. Bruno, S. Cros, S. Berson, S. G. Mhaisalkar, W. L. Leong, *Solar Energy Materials and Solar Cells* 2021, **230**, 111189.
- 20. J. Li, H. Wang, X. Y. Chin, H. A. Dewi, K. Vergeer, T. W. Goh, J. W. M. Lim, J. H. Lew, K. P. Loh, C. Soci, T. C. Sum, H. J. Bolink, N. Mathews, S. Mhaisalkar, A.

Bruno, *Joule* 2020, **4**, 1035.

- 21. E. Calabro, F. Matteocci, A. L. Palma, L. Vesce, B. Taheri, L. Carlini, I. Pis, S. Nappini, J. Dagar, C. Battocchio, T. M. Brown, A. D. Carlo, *Solar Energy Materials and Solar Cells* 2018, **185**, 136.
- 22. T. Bu, J. Li, F. Zheng, W. Chen, X. Wen, Z. Ku, Y. Peng, J. Zhong, Y. -B. Cheng, F. Huang, *Nature Communications* 2018, **9**, 4609.
- 23. H. Chen, F. Ye, W. Tang, J. He, M. Yin, Y. Wang, F. Xie, E. Bi, X. Yang, M. Gratzel, L. Han, *Nature* 2017, **550(7674)**, pp.92-95.
- 24. J. H. Heo, M. H. Lee, M. H. Jang, S. H. Im, *J. Mater. Chem. A* 2016, **4**, 17636-17642.