Electronic Supplementary Information (ESI)

Multifunctional NiO/Ti3+-TiO² for concurrent Water Reduction and Glycerol Oxidation to Value added products by Sunlight driven photocatalysis

Sivaraj Rajendran, ^a Simi Saju, ^a Sunesh S. Mani, ^a Anantha Krishnan Asoka, ^a Arindam Saha, ^{b,c} Pushkaran S. Arun, ^a Biplab Ghosh, ^d Thomas Mathew, a,*and Chinnakonda S. Gopinath b,c,*

^a Department of Chemistry, St. John's College (Affil. University of Kerala), Anchal, Kerala – 691306, India, E-Mail:

thomasmathew@stjohns.ac.in

^bCatalysis and Inorganic Chemistry Division, CSIR - National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, India. Email: [cs.gopinath@ncl.res.in.](mailto:cs.gopinath@ncl.res.in)

^c Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India

^d Beamline Development & Application Section, Bhabha Atomic Research Center, Mumbai 400085, India.

Supplementary Text:

The spectra of all the catalyst materials were recorded in grazing in fluorescence mode while that of references (Ni foil and NiO) in transmission mode. In fluorescence mode, the sample is kept at 45° to the incident X-ray beam and a silicon drift detector kept in the horizontal plane at 90° to the incident X-ray beam were employed to measure the incident flux (I_0) and florescence signal (I_f) from the sample. Then the absorption coefficient (μ) is

$$
\frac{I_f}{I}
$$

obtained by using the relation $\mu = I_0$

In transmission mode, three ionization chambers were used for measuring incident flux (I_0) , transmitted flux (I_1) and the XAS spectrum of a reference metal foil for calibration. The absorption coefficient (μ) was obtained using the relation, $I_t = I_0 e^{-\mu x}$, where x is the thickness of the material. The beamline uses a double crystal monochromator (DCM) with an operating energy range of 4-25 keV. Data processing and analysis were carried out using different data analysis programs available in the Demeter software package. The Athena module was employed for background removal, pre-edge and post-edge corrections, normalization, Fourier transform, etc. Finally, the Artemis module was employed for fitting the experimental data (raw data) against the scattering paths generated from crystallographic NiTiO₃ data using the FEFF 6.0 code. The fitting widow used for all fits is 1 to 3.4 Å, and we have also included background in the final fit.

Table S1. XPS parameters and porous characteristics obtained from N_2 adsorption-desorption analysis of TiO₂ and NiO/Ti^{3+} -TiO₂ (NiT) photocatalysts. ^a)(SOC) indicates spin–orbit coupling separation.

Photocatalyst	BE of O1s	BE of	BE of	KE of	Auger	S_{BET}	Pore	V_{p}
	[eV]	$Ni 2p_{3/2}$	$Ti 2p_{3/2}$	Ni LMM	parameter	$[m^2g^{-1}]$	size	$[{\rm mLg^{\textrm{-}1}}]$
		a) $(SOC)[eV]$	a) (SOC) [eV]	[eV]	(α')		$\lceil nm \rceil$	
TiO ₂	529.4, 530.36 and 532	NA	458.5(5.9)	NA	NA	22.1	4.9	0.050
$NiT-1$	528.2,529.65 and 530.35	855.50(17.8)	457.40, 458.4 (5.8, 5.7)	843.25	1698.7	24.1	5.6	0.052
$NiT-2$	528.2,529.6 and 530.4	855.45(17.8)	457.20,458.34 (5.9, 5.8)	843.52	1698.9	NA	NA	NA
$NiT-3$	528.2,529.6 and 530.45	855.40(18.1)	457.05,458.38 (5.9, 5.7)	843.65	1699	27.1	4.3	0.065
$NiT-4$	528.1., 529.7 and 530.7	855.30(17.8)	457.07,458.42 (5.9, 5.8)	843.95	1699.2	NA	NA	NA

Figure S1. (a) N₂ adsorption-desorption isotherms, and (b) pore size distribution pattern of TiO₂, and representative samples. Pore size distribution was estimated by the BJH model from N_2 adsorption–desorption isotherm.

Figure S2. FESEM images of TiO₂ and NiO/Ti³⁺-TiO₂ nanocomposites: (a) TiO₂ and (b) NiT-3.

Figure S3. The EDS mapping of NiT-3: (a) FESEM, (b) Ni, (c) Ti, and (d) O, reveals uniform dispersion of Ni on the surface of TiO₂.

Figure S4. The energy dispersive X-ray analysis (EDX) was employed to confirm the elemental composition of all composites and the results for NiT-3 is shown. Table shows the atom percent of Ti and Ni in NiO/Ti³⁺-TiO₂ nanocomposites.

Figure S5. XPS spectra recorded for Ti 2p, and O 1s core level from TiO₂ (a and b) and NiO/TiO₂ composite catalyst prepared by conventional impregnation method (c and d).

Figure S6. XPS spectra for Ti 2p core levels for NiTiO₃.

Sample	Edge position (eV)
Ni metal	8333.1
NiO	8345.5
$NiT-1$	8345.0
$NiT-2$	8345.1
$NiT-3$	8344.6
$NiT-4$	8344.4

Table S2. Ni K-Edge Positions obtained for Ni foil, NiO standard and NiT nanocomposites

Table S3. Structural parameters obtained from the Ni K-edge EXAFS fittings (coordination number (N), interatomic distance (R), Debye-Waller (σ^2), edge-energy correlation (ΔE).

Figure S7. UV-Vis absorption spectra (a) and band gap (b) of pure NiO.

Table S4. The decay lifetimes and the average lifetime of photoexcited charge carriers in TiO₂ and NiT-3 calculated using tri-exponential decay equation.

Parameters		Samples		
	TiO ₂	$NiT-3$		
τ_1 (ns)	0.48	1.49		
τ_2 (ns)	0.96	1.26		
τ_3 (ns)	1.94	7.59		
τ_{avg} (ns)	1.85	6.69		
2 (goodness of fitting) γ	0.99	0.99		

The average lifetime (τ_{avg}) can be estimated using the following equation **S1**:

$$
A_1 \tau_1^2 + A_2 \tau_2^2 + A_3 \tau_3^2
$$

$$
\tau_{\text{avg}} = A_1 \tau_1 + A_2 \tau_2 + A_3 \tau_3
$$

Figure S8. (a) Transient photocurrent density profiles of TiO₂ and NiT photoelectrodes in 0.1M glycerol + 1M KOH. (b) Photostability test for NiT-3 photoelectrode under continuous light illumination in 1M KOH.

Table S5. Fitting values of EIS parameters obtained for TiO₂ and NiT photoelectrodes.

Figure S9. The Electrochemical capacitance measurements to determine the electrochemically active surface area (ECSA) of the catalysts in 1 M KOH. (a) The capacitive current density on $TiO₂$ and NiT nanocomposites from double layer charging can be obtained from cyclic voltammograms (CV) at different scan rates in the non-Faradic region. (b) The measured capacitive current (j) was plotted as a function of scan rate to calculate double layer capacitance (C_{dl}) .

Calculations of ECSA for TiO² and NiT nanocomposites

Double layer capacitance (*Cdl*) was obtained by estimating half the value of slope between *Δj* at different Scan rates of 10 to 100 mVs⁻¹ in a non-Faradaic region between 0.4 and 0.6 V vs NHE. For example, in the case of NiT-3, C_{dl} = 0.2808 mF

$Cs = 0.040$ mFcm⁻² at 1M KOH¹

Where *Δj* is change in capacitive current at different scan rates and *Cs* is specific capacitance.

 $ECSA = C_{dl}/Cs = 0.2808/0.040$

 $= 7.02$ cm²

Table S6. Calculated C_{d} and ECSA values TiO₂ and NiT nanocomposites as obtained from **Figure S9**.

Figure S10. Mott−Schottky plots of TiO2, NiO and NiT nanocomposites.

The donor concentration of TiO₂ and NiT nanocomposites were calculated using MS equation ($S2$).²

$$
\frac{1}{C_S^2} = \frac{2}{q \varepsilon_r \varepsilon_0 N_D} (V_{ap} - V_{fb} - \frac{k_B T}{q})
$$
(S2)

Where N_D, q, \mathcal{E}_r , \mathcal{E}_o , V_{ap} , V_{fb} , and ${}^k{}^B T$ are the donor concentration/ the charge carrier density, electronic charge, the relative permittivity of semiconductor, permittivity of vacuum, applied potential, flat band potential and Boltzmann energy term, respectively. The $k_{B{\rm T}}$ term was negligible compared to other parameters and it was assumed that the values of q, \mathcal{E}_r and \mathcal{E}_o are same for both TiO₂ and NiT nanocomposites.

Table S7. The apparent quantum yield (AQY) of TiO₂ and NiT nanocomposites calculated at different wavelengths (nm).

Wavelength (nm)	AQY % of TiO ₂	AQY % of $NiT-1$	AQY % of $NiT-2$	AQY % of $NiT-3$	$AQY\%$ of $NiT-4$
410	0.12	1.03	1.62	4.28	3.25
490	0.01	0.65	1.05	2.26	1.53

Figure S11. Comparison of photocatalytic H_2 production efficiency of thin film form of NiT-3 and NiO/TiO₂ prepared by traditional impregnation method with same Ni /Ti ratio as that of NiT-3. A five-fold higher H_2 production rate was obtained with NiT-3 compared to the catalyst prepared by the traditional method, which does not contain Ti^{3+} indicating that Ti^{3+} has a key role in the photocatalytic performance of NiT nanocomposites.

Table S8. Product analysis of glycerol oxidation in **anaerobic** and **aerobic** conditions under direct sunlight obtained over NiT-3.

#: Selectivity among the organic liquid products obtained by glycerol oxidation

Table S9: Product analysis of glycerol oxidation in **anaerobic** and **aerobic** condition under one sun condition obtained over NiT-3.

#: Selectivity among the organic liquid products obtained by glycerol oxidation

Table S10. No. of electrons used for the production of H₂ and no. of holes used for glycerol oxidation to liquid products (Glycolaldehyde, DHA and Formic acid) with NiT-3 under direct sunlight in anaerobic and aerobic conditions.

where n means number of h^+ or e^- to transform glycerol or water into a specific product.³

Figure S12. ¹H NMR spectra of the glycerol oxidation (water suppression sequence was performed): Using NiT-3 photocatalyst in anaerobic condition under direct sunlight.

Figure S13. Influence of addition of scavengers, p-benzoquinone (BQ) and isopropanol (IPA) in the rate of photocatalytic oxidation of aqueous glycerol with NiT-3 nanocomposite in thin film form.

ND: Not Detected

Figure S14: Plausible reaction pathway for glycerol oxidation to value added products over NiT nanocomposites. Experimentally detected/measured products are shown in green and those compounds not observed is given in red.

Figure S15. FESEM image of NiT-3 before (a) and after (b) recycling. TEM image of NiT-3 before (c) and after (d) recycling, and (e) comparison of PXRD patterns of fresh and spent NiT-3 sample.

Table S11. A summary of the H₂ yield reported from previous literature over various NiO species incorporated TiO² based photocatalysts in glycerol- water solution is compared with present work.

S1: Video for hydrogen generation from thin film form of NiT-3 in direct sunlight. Pl. see the video File in .mp4 format.

Reference

- 1 M. Chauhan, K. Soni, P. E. Karthik, K. P. Reddy, C. S. Gopinath and S. Deka, *J. Mater. Chem. A*, 2019, **7**, 6985–6994.
- 2 B. Antil, L. Kumar, R. Ranjan, S. Shenoy, K. Tarafder, C. S. Gopinath and S. Deka, *ACS Appl. Energy Mater.*, 2021, **4**, 3118–3129.
- 3 Y.-H. Wu, D. A. Kuznetsov, N. C. Pflug, A. Fedorov and C. R. Müller, *J. Mater. Chem. A*, 2021, **9**, 6252.
- 4 S. P. Ramírez, J. A. Wang, M. A. Valenzuela, L. F. Chen and A. Dalai, *J. Appl. Res. Technol.*, 2020, **18**, 390–409.
- 5 M. Eisapour, H. Zhao, J. Zhao, T. Roostaei, Z. Li, A. Omidkar, J. Hu and Z. Chen, *J. Colloid Interface Sci.*, 2023, **647**, 255–263.
- 6 R. Liu, H. Yoshida, S. ichiro Fujita and M. Arai, *Appl. Catal. B Environ.*, 2014, **144**, 41–45.
- 7 S. ichiro Fujita, H. Kawamori, D. Honda, H. Yoshida and M. Arai, *Appl. Catal. B Environ.*, 2016, **181**, 818–824.