Supplementary Information (SI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2024

Supplementary Information

Conductive TiN Network-Assisted Fast-Charging of Lithium-Ion Batteries

Won Ung Jeong,^a Hong Rim Shin,^b Ilyoung Choi,^c Jae Seok Jeong,^a Joo Hyeong Suh,^a Dong Ki Kim,^a Youngugk Kim,^{c*} Jong-Won Lee,^{b,d*} Min-Sik Park^{a*}

^a Department of Advanced Materials Engineering for Information and Electronics, Integrated Education Institute for Frontier Science & Technology (BK21 Four), Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin 17104, Republic of Korea
^b Division of Materials Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, 04763 Seoul, Republic of Korea
^c Samsung SDI Co., Ltd. R&D Center, Suwon 16678, Republic of Korea
^d Department of Battery Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, 04763 Seoul, Republic of Korea

*Corresponding authors email address: youngugk.kim@samsung.com (Y. Kim), jongwonlee@hanyang.ac.kr (J.-W. Lee), mspark@khu.ac.kr (M.-S. Park)

Fig. S1. FESEM images of (a) TiN nanoparticles, and (b) TiN nanoparticles synthesized with molten salt

Fig. S2. Powder XRD patterns of TiN nanoparticles, and (b) TiN nanoparticles synthesized with molten salt

Fig. S3. FESEM images of TiN@AG 2wt%, TiN@AG 2wt% synthesized with molten salt, TiN@AG 5wt%, and TiN@AG 5wt% with molten salt.

Fig. S4. Comparison of electrode conductivity of the AG and TiN@AG anodes.

Fig. S5. C 1s XPS profiles and the fraction of Li_2CO_3 and $ROCO_2Li$ in the SEI component after 300th cycle of (c) AG and (d) TiN@AG

Sample	OCV		SOC 50%			SOC 100%		
	$\mathrm{R}_{\mathrm{b}}\left(\Omega ight)$	$R_{ct}\left(\Omega ight)$	$\mathrm{R}_{\mathrm{b}}\left(\Omega ight)$	$R_{SEI}(\Omega)$	$R_{ct}(\Omega)$	$\mathrm{R}_{\mathrm{b}}\left(\Omega ight)$	$R_{SEI}(\Omega)$	$R_{ct}(\Omega)$
AG	15.8	144.0	4.5	3.6	13.3	1.1	3.8	11.8
TiN@A G	2.5	36.3	2.0	3.1	12.9	1.2	2.2	3.6

Table S1. Fitting results of the Nyquist plots using the equivalent circuit.

Fig. S6. Electrochemical performances of various anodes: (a) galvanostatic voltage profiles at 0.1C charging and 0.1C discharging, and (b) corresponding differential voltage profiles of the first cycle.

Fig. S7. N_2 adsorption-desorption isotherms of AG, and TiN@AG particles.