Supplementary Information

Highly Dispersed Ni-Fe Active Sites on Fullerene based Electron Buffer to boost Oxygen Evolution Reaction Qin Tang,^a Lingyue Wang,^a Shenglong Zhang,^a Pengfei Xue,^b Yuye Zhang,^a Hongbo Li,^{a*} Dongdong Zhu^{b*}

^{a.} School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, China. Email: hbli@ycit.edu.cn
^{b.} School of Chemistry and Materials Science, Institute of Advanced

Materials and Flexible Electronics (IAMFE), Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing, 210044, China. E-mail: dd.zhu@nuist.edu.cn

Fig. S1 Digital photos of C_{60} in toluene (a) before reaction, (b) after reaction, (c) contrast of C_{60} in toluene, C_{60} in H₂O and C_{60} (OH)_x in H₂O.

Fig. S2 Contact angles of fullerene C_{60} and fulleol $C_{60}(OH)_x$.

Fig. S3 (a-b) SEM images of C_{60} powders.

Fig. S4 (a-b) SEM images of $C_{60}(OH)_x$ powders.

Fig. S5 (a-b) SEM images of NiFe-OC $_{60}$ powders.

Fig. S6 XPS survey spectrum of NiFe-OC₆₀.

Fig. S7 (a) XPS Ni 2p spectra of NiFe-OCNTs, NiFe-OG and NiFe-OC₆₀, (b) XPS Ni 2p spectra of Ni-OC₆₀ and NiFe-OC₆₀.

Fig. S8 (a) XPS Fe 2p spectrum of NiFe-OC₆₀, and (b) XPS O 1s spectrum of NiFe-OC₆₀.

Fig. S9 LSV curves of NiFe-OC $_{60}$ and commercial $\mathrm{RuO}_{2}.$

Fig. S10 Comparison of NiFe-OCNTs, NiFe-OG and NiFe-OC₆₀ (a) LSV, (b) Tafel plots, (c) Nyquist plots, (d) Current density as a function of the scan rate to give the double-layer capacitance (C_{dl}) .

Fig. S11 CV curves of (a) C₆₀(OH)_x, (b) Fe-OC₆₀, (c) NiFe-OC₆₀, (d) Ni-OC₆₀.

Fig. S12 ECSA-normalized LSV curves of NiFe-OC₆₀, Fe-OC₆₀, Ni-OC₆₀ and C₆₀(OH)_x.

Fig. S13 (a) LSV curves of NiFe-OC₆₀, NiFe-OC₆₀-200, NiFe-OC₆₀-250 and NiFe-OC₆₀-300 samples, (b) Chronopotentiometry curve of NiFe-OC₆₀-200 measured at a fixed current density of 10 mA cm^{-2} .

Fig. S14 TEM and HRTEM images of (a, b) NiFe-OC₆₀-200, (c, d) NiFe-OC₆₀-250, and (e, f) NiFe-OC₆₀-300 samples before OER test.

Fig. S15 (a-b) TEM images of NiFe-OC $_{\rm 60}$ after OER stability test.

Fig. S16 High-resolution O 1s spectrum of NiFe-OC₆₀ after OER stability test.

_	Ni/Ni+Fe	Overpotential (mV)	Current density (mA cm ⁻²)	Tafel Slop
	molar ratio	$@ 10 \text{ mA cm}^{-2}$	@ 1.6 V vs. RHE	$(mV dec^{-1})$
	0.1	334	30.29	141.15
	0.3	393	5.14	202.61
	0.5	383	7.26	144.02
	0.7	388	5.63	154.41
	0.9	314	126.11	38.62

Table S1. Overpotentials and Tafel plots of NiFe-OC₆₀ samples prepared with different Ni/Ni+Fe molar ratios in 1.0 M KOH.

Catalyst	Overpotential (mV) at 10 mA cm ⁻²	Tafel slope (mV dec ⁻¹)	Ref.
NiFe-OC ₆₀	314	38.62	This work
Ni-OC ₆₀	407.96	130.49	This work
NiFe-OCNTs	381.1	93	This work
NiFe-OG	533.5	180	This work
NFO/G	330	137.8	1
Ni-MWCNTs	320	46.16	2
p-NFNR@Ni-Co-P	272	62	3
FeNi LDH@3DG/CNs	380	77.9	4
$Ni_{0.9}Fe_{0.1}/NC$	330	45	5
FQD/CoNi-LDH	340	94	6
CeNdS/C ₆₀	346	68	7
F/BCN	390	79	8
Ni-NiO@3DHPG	410	55	9
Ni–Mo _x C/NC-100	328	74	10
NiFe ₂ O ₄ /SWCNT	356	158	11
Fe ₂ N/r-GO-20	390	93	12
Ni ₃ N/r-GO-20	352	65	12
NiFeO _x	350	-	13
NiFeO _x H _y	348	41.5	14
NiFe LDH	310	78	15

Table S2. Comparison of NiFe-OC₆₀ with some other OER electrocatalysts based on fullerene, graphene, carbon nanotube or Ni/Fe in alkaline conditions.

References

- J.-Y. Qin, S.-k. Wang, S. Zhou, T. Liu, Y.-h. Yin and J. Yang, *Adv. Energy Sustainability Res.*, 2021, 2, 2000106.
- S. Kang, H. Han, S. Mhin, H. R. Chae, W. R. Kim and K. M. Kim, *Appl. Surf. Sci.*, 2021, 547, 149197.
- Y. Feng, R. Wang, P. Dong, X. Wang, W. Feng, J. Chen, L. Cao, L. Feng, C. He and J. Huang, ACS Appl. Mater. Interfaces, 2021, 13, 48949-48961.
- 4. Y. Li, M. Zhao, Y. Zhao, L. Song and Z. Zhang, Part. Syst. Charact., 2016, 33, 158-166.
- 5. X. Zhang, H. Xu, X. Li, Y. Li, T. Yang and Y. Liang, ACS Catal., 2016, 6, 580-588.
- Y. Feng, X. Wang, J. Huang, P. Dong, J. Ji, J. Li, L. Cao, L. Feng, P. Jin and C. Wang, *Chem. Eng. J.*, 2020, **390**, 124525.
- T. Munawar, A. Bashir, M. S. Nadeem, F. Mukhtar, S. Manzoor, M. N. Ashiq, S. A. Khan, M. Koc and F. Iqbal, *Energy Fuels*, 2023, 37, 1370-1386.
- M. A. Ahsan, T. He, K. Eid, A. M. Abdullah, M. L. Curry, A. Du, A. R. Puente Santiago, L. Echegoyen and J. C. Noveron, *J. Am. Chem. Soc.*, 2021, 143, 1203-1215.
- N. Ullah, M. Xie, L. Chen, W. Yaseen, W. Zhao, S. Yang, Y. Xu and J. Xie, *Mater. Chem. Phys.*, 2021, 261, 124237.
- 10. D. Das, S. Santra and K. K. Nanda, ACS Appl. Mater. Interfaces, 2018, 10, 35025-35038.
- 11. P. V. Shinde, R. Samal and C. S. Rout, *Trans. Tianjin Univ.*, 2022, 28, 80-88.
- Y. Gu, S. Chen, J. Ren, Y. A. Jia, C. Chen, S. Komarneni, D. Yang and X. Yao, *ACS Nano*, 2018, **12**, 245-253.
- C. C. McCrory, S. Jung, J. C. Peters and T. F. Jaramillo, J. Am. Chem. Soc., 2013, 135, 16977–16987.
- D. Xu, M. B. Stevens, M. R. Cosby, S. Z. Oener, A. M. Smith, L. J. Enman, K. E. Ayers, C.
 B. Capuano, J. N. Renner and N. Danilovic, *ACS Catal.*, 2018, 9, 7-15.
- Q. Zhou, Y. Chen, G. Zhao, Y. Lin, Z. Yu, X. Xu, X. Wang, H. K. Liu, W. Sun and S. X. Dou, *ACS Catal.*, 2018, 8, 5382-5390.