Supplementary Information

In-situ Study of CdS/WO₃ and CdS/SnO₂ Heterostructures: Comparison of

Photocatalytic Activity Behavior

Hyejin Yu,^a * Dung Thanh Hoang,^{b, *} Hyun Sung Kim^{*,a}, Hangil Lee^{*,b}

^a Department of Chemistry, Pukyong National University, Busan 48513, Republic of Korea

^bDepartment of Chemistry, Sookmyung Women's University, Seoul 04310, Republic of Korea

Table of Contents

Figure S1. The samples of fabricated CdS/WO ₃ (n) and CdS/SnO ₂ (n) heterostructures ($n = WO_3$ or SnO ₂ wt.%).
Figure S2. Energy-dispersive X-ray spectra of CdS/WO ₃ (50) and CdS/SnO ₂ (50) heterostructure systems.
Figure S3 . SEM Image and their EDS mapping of CdS, WO3, CdS/SnO(50), CdS/WO ₃ (50), and SnO ₂ NPs.
$\label{eq:Figure S4.} Figure \ S4. Brunauer-Emmett-Teller \ analysis \ of \ CdS/WO_3(n) \ and \ CdS/SnO_2(n) \ heterostructure \ systems \ (n=WO_3) \ and \ CdS/SnO_2(n) \ heterostructure \ systems \ (n=WO_3) \ and \ CdS/SnO_2(n) \ heterostructure \ systems \ (n=WO_3) \ and \ CdS/SnO_2(n) \ heterostructure \ systems \ (n=WO_3) \ and \ Same \ $
or SnO ₂ wt.%)5
$eq:Figure S5. Small-angle XRD patterns of (a) CdS/WO_3(n) and (b) CdS/SnO_2(n) heterostructure systems (n = WO_3 n) and (b) CdS/SnO_2(n) heterostructure systems (n = WO_3 n) and (b) CdS/SnO_2(n) heterostructure systems (n = WO_3 n) and (b) CdS/SnO_2(n) heterostructure systems (n = WO_3 n) and (b) CdS/SnO_2(n) heterostructure systems (n = WO_3 n) and (b) CdS/SnO_2(n) heterostructure systems (n = WO_3 n) and (b) CdS/SnO_2(n) heterostructure systems (n = WO_3 n) and (b) CdS/SnO_2(n) heterostructure systems (n = WO_3 n) and (b) CdS/SnO_2(n) heterostructure systems (n = WO_3 n) and (b) CdS/SnO_2(n) heterostructure systems (n = WO_3 n) and (b) CdS/SnO_2(n) heterostructure systems (n = WO_3 n) and (b) CdS/SnO_2(n) heterostructure systems (n = WO_3 n) and (b) CdS/SnO_2(n) heterostructure systems (n = WO_3 n) and (b) CdS/SnO_2(n) heterostructure systems (n = WO_3 n) and (b) CdS/SnO_2(n) heterostructure systems (n = WO_3 n) and (b) CdS/SnO_2(n) heterostructure systems (n = WO_3 n) and (b) CdS/SnO_2(n) heterostructure systems (n = WO_3 n) and (b) cdS/SnO_2(n) and (b$
or SnO ₂ wt.%)
Figure S6. LC-MS results of CdS/WO ₃ (n) and CdS/SnO ₂ (n) heterostructure systems7
Figure S7. Photocatalytic degradation of HMF by (a) $CdS/WO_3(25)$ and (b) $CdS/SnO_2(25)$ heterostructures in the
presence (grey color) and absence (red color) of DMPO as •O2-scavenger
Figure S8. Product analysis through HPLC for selective oxidation from HMF to FDCA via DFF
Figure S9. Photocatalytic HMF-decomposition degradation data over 10 cycles using CdS/WO ₃ (n) and
$CdS/SnO_2(n)$ heterostructure systems (n = WO ₃ or SnO ₂ wt.%)10
Figure S10. Comparison of Photocatalytic activities between heterostructure and physically mixed components.
$eq:Figure S11. PCD activities of benzyl alcohol (BA) for (a) CdS/WO_3(n) and (b) CdS/SnO_2(n) heterostructures and CdS/WO_3(n) and (b) CdS/SnO_3(n) and ($
the yield of the end product, benzaldehyde (BAD), from BA for (c) $CdS/WO_3(n)$ and (d) $CdS/SnO_2(n)$
heterostructures with varying ratios, under at 445 nm irradiation over 24 h (n = WO_3 or SnO_2 wt.%)11
Figure S12. Confirmation of the photocatalytic reactivity of the CdS/WO ₃ (50) heterostructure system using in-
situ XPS12
Figure S13. Photocatalytic conversion activities of (a) HMF and (b) BA for CdS–WO ₃ (n) mixed samples. Yield
of the end product, (c) FDCA from HMF and (d) BAD from BA, for CdS-WO ₃ (n) mixed samples with varying
ratios under 445 nm irradiation over 24 h. * The bar (-) indicates physical mixing between CdS and WO3 NPs (n
= WO ₃ or SnO ₂ wt.%)
Figure S14. (a) Cd 3d, (b) S 2p, (c) W 4f, and (d) O 1s core-level X-ray photoelectron spectra of CdS–WO ₃ (n)
mixed samples. Colors indicate the ratio between the two heterostructures: $n = 0$ (black), $n = 25$ (red), $n = 50$
(blue), $n = 75$ (orange), and $n = 100$ (olive). * The bar (-) indicates physical mixing between CdS and WO ₃ NPs
$(n = WO_3 \text{ or } SnO_2 \text{ wt.}\%)$
Table S1. Specific surface area S_{BET} of CdS/WO ₃ (n) and CdS/SnO ₂ (n) heterostructures, as a function of ratio,
using BET analysis ($n = WO_3$ or SnO_2 wt.%)

Figure S1. The samples of fabricated CdS/WO₃(n) and CdS/SnO₂(n) heterostructures ($n = WO_3$ or SnO₂ wt.%).

Figure S2. Energy-dispersive X-ray images of $CdS/WO_3(50)$ and $CdS/SnO_2(50)$ heterostructure systems.

Figure S3. SEM Image and their EDS mapping of CdS, WO₃, SnO₂, CdS/WO₃(50), and CdS/SnO₂-(50).

Figure S4. Brunauer-Emmett-Teller analysis of CdS/WO₃(n) and CdS/SnO₂(n) heterostructure systems $(n = WO_3 \text{ or } SnO_2 \text{ wt.\%}).$

Figure S5. Small-angle XRD patterns of (a) CdS/WO₃(n) and (b) CdS/SnO₂(n) heterostructure systems $(n = WO_3 \text{ or } SnO_2 \text{ wt.}\%)$..

Figure S6. LC-MS results of CdS/WO₃(n) and CdS/SnO₂(n) heterostructure systems.

Figure S7. Photocatalytic degradation of HMF by (a) CdS/WO₃(25) and (b) CdS/SnO₂(25) heterostructures in the presence (grey color) and absence (red color) of DMPO as \cdot O₂-scavenger.

Figure S8. Product analysis through HPLC for selective oxidation from HMF to FDCA via DFF.

Figure S9. Photocatalytic HMF-decomposition degradation data over 10 cycles using CdS/WO₃(n) and CdS/SnO₂(n) heterostructure systems ($n = WO_3$ or SnO₂ wt.%).

Figure S10. Comparison of Photocatalytic activities between heterostructure and physically mixed components. [Key: black—CdS; red—CdS/WO₃(25) and CdS/SnO₂(25) ; blue— CdS/WO₃(50) and CdS/SnO₂(50); orange— CdS/WO₃(75) and CdS/SnO₂(75); and green—WO₃ and SnO₂.].

Figure S11. PCD activities of benzyl alcohol (BA) for (a) $CdS/WO_3(n)$ and (b) $CdS/SnO_2(n)$ heterostructures. [Key: black—CdS; red—CdS/WO_3(25) and CdS/SnO_2(25); blue—CdS/WO_3(50) and CdS/SnO_2(50); orange—CdS/WO_3(75) and CdS/SnO_2(75); and green—WO_3 and SnO_2.]. The yield of the end product, benzaldehyde (BAD), from BA for (c) CdS/WO_3(n) and (d) CdS/SnO_2(n) heterostructures with varying ratios, under at 445 nm irradiation over 24 h (n = WO_3 or SnO_2 wt.%).

Figure S12. Confirmation of the photocatalytic reactivity of the CdS/WO₃(50) heterostructure system using *in-situ* XPS.

Figure S13. Photocatalytic conversion activities of (a) HMF and (b) BA for CdS–WO₃(n) mixed samples. Yield of the end product, (c) FDCA from HMF and (d) BAD from BA, for CdS–WO₃(n) mixed samples with varying ratios under 445 nm irradiation over 24 h. * The bar (–) indicates physical mixing between CdS and WO₃ NPs (n = WO₃ or SnO₂ wt.%).

Figure S14. (a) Cd 3*d*, (b) S 2*p*, (c) W 4*f*, and (d) O 1*s* core-level X-ray photoelectron spectra of CdS– $WO_3(n)$ mixed samples. Colors indicate the ratio between the two heterostructures: n = 0 (black), n = 25 (red), n = 50 (blue), n = 75 (orange), and n = 100 (olive). * The bar (–) indicates physical mixing between CdS and WO₃ NPs ($n = WO_3$ or SnO₂ wt.%).

Samples	CdS	CdS/WO ₃ (25)	CdS/WO ₃ (50)	CdS/WO ₃ (75)	WO ₃
S_{BET} (m ² /g)	34.9	37.9	45.1	41.2	33.2
Samples	CdS	$CdS/SnO_2(25)$	$CdS/SnO_2(50)$	$CdS/SnO_2(75)$	SnO ₂
S_{BET} (m ² /g)	34.9	36.9	36.5	36.1	35.9

Table S1. Specific surface area S_{BET} of CdS/WO₃(n) and CdS/SnO₂(n) heterostructures, as afunction of ratio, using BET analysis (n = WO₃ or SnO₂ wt.%).