Supporting Information

Magnetorheological fluid based infinitelyregulatable triboelectric tactile sensor

Xin Chong¹, Zhenqiu Gao¹, Zifan Jiang¹, Ao Wang¹, Jia Shi¹, Lanyue Shen¹, Zhen Wen^{1,*} and Xuhui Sun^{1,*}

¹ Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon–Based Functional Materials and Devices, Soochow University, Suzhou 215123, P.R. China.

*Corresponding Authors: wenzhen2011@suda.edu.cn (Z. Wen); xhsun@suda.edu.cn (X. Sun).

Figure S1. Optical images of the 100#, 300# and 600# wire meshes

Figure S2. Water contact angle of raw silicone rubber.

Figure S3. The relationship and linear fitting between the relative variations of voltage and pressure of MRF-TPS without microstructure.

Figure S4. The summarized variation of sensitivity in high-pressure region of different MRF-TPSs.

Figure S5. The optical images of magnetorheological fluid in different states.

Figure S6. Periodic loading-unloading process of MRF-TPS in liquidsolid mode for 2000 cycles.

Figure S7. The relationship and linear fitting between the relative variations of voltage and pressure of 100#MRF-TPS under different magnet fields.

Figure S8. The relationship and linear fitting between the relative variations of voltage and pressure of 300#MRF-TPS under different magnet fields.

Figure S9. The summarized variation of sensitivity in two regions of 100#MRF-TPS under different magnet fields.

Figure S10. The summarized variation of sensitivity in two regions of 300#MRF-TPS under different magnet fields.