Supporting Information for

Electron-beam-evaporated NiO_X for efficient and stable semi-transparent perovskite solar cells and modules

Junye Pan¹, Jiahui Chen¹, Bingxin Duan¹, Yuxi Zhang¹, Peiran Hou¹, Yanqing Zhu¹, Min Hu^{2*}, Wangnan Li³, Yi-

Bing Cheng⁴, Jianfeng Lu^{1*}

¹ State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070,

China;

² School of Electronic and Electrical Engineering, Hubei Province Engineering Research Center for Intelligent Micro-

Nano Medical Equipment and Key Technologies, Wuhan Textile University, Wuhan 430200, China;

³ Hubei Key Laboratory of Low Dimensional Optoelectronic Material and Devices, Hubei University of Arts and

Science, Xiangyang 441053, China;

⁴ State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China;

* E-mail: jianfeng.lu@whut.edu.cn (JL)

TABLE OF CONTENTS

		Page
	Experimental section	S4-6
Figure S1	XPS spectra of Ni 2p and O 1s of NiO_X film with or without annealing	S 7
Figure S2	Statistic PV parameters with different annealing temperature of NiO_X	S 8
Figure S3	Statistic PV parameters with different annealing time of NiO_X	S9
Figure S4	Statistic PV parameters with different thickness of NiO_X	S10
Figure S5	Statistic PV parameters with spiro-OMeTAD $ MoO_X \text{ or } NiO_X \text{ film}$	S11
Figure S6	Top-view SEM images of $FTO SnO_2 CsPbBr_3 PTAA/MoO_X NiO_X$ film	S12
Figure S7	Statistic PV parameters with different buffer layers	S13
Figure S8	Top-view SEM images of perovskite film with different buffer layers	S14
Figure S9	AFM images of FTO SnO ₂ CsPbBr ₃ or FTO SnO ₂ CsPbBr ₃ P3HT films	S15
Figure S10	KPFM images of FTO SnO2 CsPbBr3 or FTO SnO2 CsPbBr3 P3HT films	S16
Figure S11	UPS spectra of CsPbBr ₃ , NiO _X , P3HT and P3HT NiO _X films	S17
Figure S12	XRD patterns of different films	S18
Figure S13	Absorption spectra of different films	S19
Figure S14	The J_{SC} versus light intensity of ST-PSCs with NiO _X or P3HT NiO _X film	S20
Figure S15	TPC decay curves of ST-PSCs with NiO_X or P3HT NiO_X film	S21
Figure S16	Statistic PV parameters with sputtered NiO_X or $P3HT NiO_X$ film	S22
Figure S17	Evolution of PV parameters of NiO_X or $P3HT NiO_X$ devices	S23
Figure S18	Evolution of V_{OC} of spiro-OMeTAD MoO _X or P3HT NiO _X devices	S24
Figure S19	Statistic PV parameters of P3HT NiO _X modules	S25
Figure S20	Evolution of PV parameters of P3HT NiOX modules	S26
Figure S21	Prototype photos for colorful heat-insulating photovoltaic glass	S27
Table S1	The atomic ratio of Ni ²⁺ /Ni ³⁺ , and the value of x in NiO _X	S28
Table S2	PV parameters of ST-PSCs with different NiO_X annealing temperature	S29
Table S3	PV parameters of ST-PSCs with different NiO_X annealing time	S30
Table S4	PV parameters of ST-PSCs with different NiO _X thickness	S31
Table S5	PV parameters of spiro-OMeTAD $ MoO_X$ or NiO_X based ST-PSCs	S32
Table S6	PV parameters of ST-PSCs with different buffer layers	S33

Supporting Information for

Table S7	$E_{\text{cut-off}}, E_{\text{F, edge}}$, and E_{VB} for different films	S34
Table S8	Fitted results of the TRPL curves of ST-PSCs	S35
Table S9	The reported inorganic ST-PSCs in recent years	S36
Table S10	PV parameters of ST-PSCs with sputtered NiO_X or P3HT NiO _X film	S37
Table S11	PV parameters of P3HT NiO _X modules	S38
	Supplementary references	S39

Experimental section

Materials

All materials in this experiment were used as received without any further purification. Fluorine doped tin oxide (FTO, ca. 10 Ω sq⁻¹) glass was purchased from Yingkou Opv Tech New Energy Technology Co., Ltd.. Hydrochloric acid (HCl) was purchased from China National Pharmaceutical Group Corp.. Urea was purchased from Alfa Aesar. SnCl₂•2H₂O was purchased from Aladdin. Lead bromide (PbBr₂), cesium bromide (CsBr), Poly[bis(4-phenyl)(2,4,6-triMethylphenyl)aMine] (PTAA) and poly(3-hexylthiophene) (P3HT) were purchased from Xi'an Yuri Solar Co., Ltd. Thioglycolic acid, 2,2',7,7'-tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9'-spirobifluorene (spiro-OMeTAD), chlorobenzene (CB), toluene, 4-tert-butylphenol (tBP), molybdenum oxide (MoO_X), lithium bis(trifloromethanesulfonyl) imide (LiTFSI) and tris(2-(1H-pyrazol-1-yl)-4-tert-butyl pyridine)-cobalt(III)tris(bis(trifluoromethylsulfonyl)imide)) (FK209) were purchased from Sigma-Aldrich. Nickel oxide (NiO_X) particles and ITO target were purchased from ZhongNuo Advanced Material Technology Co., Ltd..

Device fabrication

Small-area solar cell with spiro-OMeTAD $|MoO_X$: Firstly, FTO glasses were etched via a femtosecond laser machine (Universal Laser Systems, VLS2.30) and brushed by a toothbrush. Then, they were successively immersed into detergent, deionized water and ethanol for ultrasonic washing (15 min) and dried by dry-air blowing.

Next, SnO₂ electron transport layers (ETLs) were prepared on the FTO surface treated with UV ozone (15 min) by chemical bath deposition (CBD) method as the following steps: (1) 5 mL HCl, 5 g urea, 1.096 g SnCl₂•2H₂O and 100 μ L thioglycolic acid were dissolved in 400 mL deionized water to prepare SnO₂ solution with a concentration of 0.012 mol L⁻¹ and then stored in a refrigerator for 3 h. (2) A ascleaned FTO glass was immersed into the SnO₂ solution which was diluted to 0.002 mol L⁻¹ for 2.5 h at 83 °C, and then rinsed with deionized water and dried by dry-air blowing. (3) Above substrate was annealed at 180 °C for 1 h.

The CsPbBr₃ films were prepared by the following steps: (1) CsBr and PbBr₂ powders were thermally evaporated onto the SnO₂ surface with deposition rates of ~3.5 and ~4.5 Å s⁻¹ sequentially. The above step was repeated twice. (2) The obtained CsBr|PbBr₂ film was annealed at 320 °C for 20 min, and then 300 °C for 40 min.

A hole transport layer (HTL) solution was prepared by dissolving 73 mg spiro-OMeTAD into 1 mL CB followed by additing 30 μ L tBP, 18 μ L LiTFSI (520 mg mL⁻¹ solution in acetonitrile) and 29 μ L FK209 (300 mg mL⁻¹ solution in acetonitrile). 25 μ L spiro-OMeTAD solution was coated on

perovskite film at 3000 rpm for 30 s with a ramp of 1000 rpm s⁻¹. MoO_X powder was thermally evaporated with a rate of 0.1 Å s⁻¹ onto the spiro-OMeTAD surface.

Finally, 180 nm ITO electrode was deposited at 37 W by radio frequency (RF) sputtering system under a pressure of 3.75×10^{-5} Torr.

Small-area solar cell with buffer layer $|NiO_X$: The FTO $|SnO_2|CsPbBr_3$ substrate was prepared according to the above methods.

Various buffer layers were prepared by the following methods: (1) P3HT buffer layer solutions were prepared by dissolving 1/2/5 mg P3HT into 1 mL CB. 25 µL P3HT solution was coated on the perovskite film at 3000 rpm for 30 s with a ramp of 1000 rpm s⁻¹. (2) PTAA buffer layer solution was prepared by dissolving 5 mg PTAA into 1 mL toluene. 25 µL PTAA solution was coated on the perovskite film at 3000 rpm for 30 s with a ramp of 1000 rpm s⁻¹. (3) MoO_X powder was thermally evaporated with a rate of 0.1 Å s⁻¹ onto the surface of perovskite film to prepare 5 nm MoO_X buffer layer.

 NiO_X were evaporated by electron beam onto the CsPbBr₃|buffer layer at the rate of 0.1, 0.2 and 0.3 Å s⁻¹ successively to deposit 35 nm NiO_X film. The obtained film was treated at 300 °C for 60 min.

Eventually, 180 nm ITO electrode was deposited at 37 W by RF sputtering system under a pressure of 3.75×10^{-5} Torr.

Large area perovskite solar module: Firstly, FTO glasses were etched via a femtosecond laser machine to form P1 lines and then cleaned following the above protocols. SnO₂ and CsPbBr₃ film were prepared successively by above methods. For module preparation, the P3HT was deposited by a slot-die coating process in air according to our previous established protocols.¹ The gap between coating head and substrate was fixed to 150 μ m. The concentration of P3HT solution was 2 mg mL⁻¹ and the coating speed was 8 mm s⁻¹ with a pumping speed of 5 μ L s⁻¹. After the deposition of the P3HT and NiO_X films, the samples were re-etched to form P2 lines. Eventually, 180 nm ITO electrode was deposited at 37 W by RF sputtering system under a pressure of 3.75×10^{-5} Torr and effective series connected modules were formed via separate the ITO to form P3 lines.

Characterization:

Current density-voltage (J-V) curves of various devices were measured via a source meter of Keithley 2400 and an Oriel solar simulator equipped with a xenon lamp (100 mW cm⁻², calibrated by a standard silicon reference solar cell) and an AM 1.5G filter in the room environment. Metal masks with the aperture of 0.16 cm² and 10.0 cm² for small-area solar cells and large-area solar modules respectively were used to define the active area. The *J*–*V* scans were recorded at 10 mV steps with a scan rate of 100 mV s⁻¹ from 1.6 V to -0.1 V.

Incident photon to current conversion efficiency (IPCE) spectra was measured via a QEX10 solar cell instrument and a photodiode used to calibrate the measurements had been calibrated via Newport.

Quasi-stabilized power output (*q*-SPO) curves were measured via a source meter of Keithley 2400 and an Oriel solar simulator equipped with a xenon lamp (100 mW cm⁻², calibrated by a standard silicon reference solar cell) and an AM 1.5G filter in the room environment and recorded at the potential around the maximum power point for 120 s.

Scanning Electron Microscopy (SEM) images were recorded via the Hitachi S4800 and Zeiss Gemini 300.

X-ray diffraction (XRD) patterns were obtained via the Bruker D8 Advance diffractometer equipped with a Cu Ka X-ray tube operated at 40 kV and 40 mA using a step size of 0.02° and a time per step of 0.12 s.

Ultraviolet–visible (UV–Vis) absorption spectra were obtained via UV-vis spectrophotometer (lambda 750S, PerkinElmer).

Steady-state photoluminescence (PL) and time-resolved PL (TRPL) decay curves were measured via the Delta Flex Flux Fluorescence Lifetime System (HORIBA Scientific Company, Japan) with 485 nm laser excitation.

Space charge limited current (SCLC) was measured via a Chenhua electrochemistry workstation in the dark.

Dark J-V curves were measured via a Keithley 2400 source meter and recorded at 10 mV steps with a scan rate of 100 mV s⁻¹ from 1.6 V to -0.1V in the dark.

Transient photovoltage (TPV) and transient photocurrent (TPC) tests were used to record the attenuation process of photovoltage and photocurrent.

Mott-Schottky analyses were measured via an impedance spectrum analyzer (Chenhua) in the dark and the frequency is set at 999.682 Hz.

Environmental stability test: According to the protocol of ISOS-D-2, the non-encapsulated small-area solar cells were aged at the condition with a temperature of 65 °C and a relative humidity (RH) of 55 \pm 10% in the dark and regularly measured *J-V* curves. According to the protocol of ISOS-D-1, the non-encapsulated large-area solar modules were aged at the condition with a temperature of 25 \pm 5 °C and a RH of 35 \pm 5% in the dark and regularly measured *J-V* curves.

Heat-insulating performance were measured via an Oriel solar simulator equipped with a xenon lamp (100 mW cm⁻², calibrated by a standard silicon reference solar cell) and an AM 1.5G filter in the room environment.

Figure S1. XPS spectra of (a) Ni 2p, and (b) O 1s of NiO_X film without annealing. XPS spectra of (c) Ni 2p, and (d) O 1s of NiO_X film with annealing in air condition.

Figure S2. Statistics (a) V_{OC} , (b) J_{SC} , (c) FF, and (d) PCE distributions of 8 independent cells of ST-PSCs based on NiO_X with different annealing temperature. All devices were measured under AM 1.5G 1-sun irradiation with a metal mask of 0.16 cm².

Figure S3. Statistics (a) V_{OC} , (b) J_{SC} , (c) FF, and (d) PCE distributions of 8 independent cells of ST-PSCs based on NiO_X with different annealing time. All devices were measured under AM 1.5G 1-sun irradiation with a metal mask of 0.16 cm².

Figure S4. Statistics (a) V_{OC} , (b) J_{SC} , (c) FF, and (d) PCE distributions of 12 independent cells of ST-PSCs based on NiO_X with different thickness. All devices were measured under AM 1.5G 1-sun irradiation with a metal mask of 0.16 cm².

Figure S5. Statistics (a) V_{OC} , (b) J_{SC} , and (c) FF distributions of 16 independent cells of ST-PSCs with spiro-OMeTAD|MoO_X or NiO_X film. All devices were measured under AM 1.5G 1-sun irradiation with a metal mask of 0.16 cm².

Figure S6. Top-view SEM images of (a) $FTO|SnO_2|CsPbBr_3|PTAA|NiO_X$, (b) $FTO|SnO_2|CsPbBr_3|MoO_X|NiO_X$ films.

Figure S7. Statistics (a) V_{OC} , (b) J_{SC} , (c) FF, and (d) PCE distributions of 16 independent cells of ST-PSCs with different buffer layers. The device structure is glass|FTO|SnO₂|CsPbBr₃|buffer layer|NiO_X|ITO. These buffer layers are fabricated based on 1 mg mL⁻¹ P3HT (1-P3HT), 2 mg mL⁻¹ P3HT (2-P3HT), 5 mg mL⁻¹ P3HT (5-P3HT), 5 mg mL⁻¹ PTAA, and 5 nm MoO_X, respectively. All devices were measured under AM 1.5G 1-sun irradiation with a metal mask of 0.16 cm².

Figure S8. Top-view SEM images of (a) $FTO|SnO_2|CsPbBr_3|1$ mg mL⁻¹ P3HT, (b) $FTO|SnO_2|CsPbBr_3|2$ mg mL⁻¹ P3HT, (c) $FTO|SnO_2|CsPbBr_3|5$ mg mL⁻¹ P3HT, (d) $FTO|SnO_2|CsPbBr_3|1$ mg mL⁻¹ P3HT|NiO_X, (e) $FTO|SnO_2|CsPbBr_3|5$ mg mL⁻¹ P3HT|NiO_X films.

Figure S9. AFM images of (a) FTO|SnO₂|CsPbBr₃, (b) FTO|SnO₂|CsPbBr₃|2 mg mL⁻¹ P3HT films.

Supporting Information for

Figure S10. KPFM images of (a) FTO|SnO₂|CsPbBr₃, (b) FTO|SnO₂|CsPbBr₃|2 mg mL⁻¹ P3HT films.

Figure S11. UPS spectra of (a) CsPbBr₃, (b) NiO_X, (c) P3HT, and (d) P3HT|NiO_X films, showing the Fermi edge ($E_{F, edge}$), and cut-off energy ($E_{cut-off}$).

FigureS12.XRDpatternsof $FTO|SnO_2|CsPbBr_3$, $FTO|SnO_2|CsPbBr_3|NiO_X$, $FTO|SnO_2|CsPbBr_3|P3HT$, and $FTO|SnO_2|CsPbBr_3|P3HT|NiO_X$ films.

Figure S13. Absorption spectra of $FTO|SnO_2|CsPbBr_3$, $FTO|SnO_2|CsPbBr_3|NiO_X$, $FTO|SnO_2|CsPbBr_3|P3HT$, and $FTO|SnO_2|CsPbBr_3|P3HT|NiO_X$ films.

Figure S14. The J_{SC} versus light intensity plots of ST-PSCs with NiO_X or P3HT|NiO_X film.

Figure S15. Transient photocurrent (TPC) decay curves of ST-PSCs with NiO_X or P3HT| NiO_X film.

Figure S16. Statistics (a) V_{OC} , (b) J_{SC} , (c) FF, and (d) PCE distributions of 12 independent cells of ST-PSCs with NiO_X or P3HT|NiO_X film prepared by different sputtering powers. These films are fabricated based on 30 W NiO_X (30-N), 75 W NiO_X (75-N), P3HT|30 W NiO_X (P-30-N), and P3HT|75 W NiO_X (P-75-N). All devices were measured under AM 1.5G 1-sun irradiation with a metal mask of 0.16 cm².

Figure S17. Evolution of (a) PCE, (b) FF, (c) J_{SC} , and (d) V_{OC} originating from non-encapsulated devices with NiO_X or P3HT|NiO_X film aging at a condition with a temperature of 65 °C and a RH of $55 \pm 10\%$ in the dark. All devices were measured under AM 1.5G 1-sun irradiation with a metal mask of 0.16 cm².

Figure S18. Evolution of V_{OC} originating from non-encapsulated devices with spiro-OMeTAD|MoO_X or P3HT|NiO_X film aging at a condition with a temperature of 65 °C and a RH of 55 ± 10% in the dark. All devices were measured under AM 1.5G 1-sun irradiation with a metal mask of 0.16 cm².

Figure S19. (a) V_{OC} , (b) J_{SC} , and (c) FF distributions of 20 independent modules modification. All modules were measured under AM 1.5G 1-sun irradiation with a metal mask of 10.0 cm²;

Figure S20. Evolution of V_{OC} , J_{SC} , and FF originating from non-encapsulated modules aging at a condition with a temperature of 25 ± 5 °C and a RH of $35 \pm 5\%$ in the dark. All devices were measured under AM 1.5G 1-sun irradiation with a metal mask of 10 cm².

Figure S21. Prototype photos of (a) ordinary glass side and (b) photovoltaic glass side for colorful heat-insulating photovoltaic glass. The device structure is glass|ST-PSM|filter|glass.

Table S1.	The atomic ratio	o of Ni ²⁺ /Ni ³⁺ , an	d the value of	f x in NiO_X with	or without a	innealing ur	ıder
air conditi	on.						

Samples	Atomic ratio of Ni ²⁺ /Ni ³⁺	The value of x
w/o annealing	0.55	1.32
w/ annealing	0.50	1.33

Temperature (°C)		V _{OC} (V)	$J_{ m SC}$ (mA cm ⁻²)	FF	PCE (%)
200	Champion	1.33	5.3	0.50	3.6
200	Average	1.33 ± 0.02	5.3 ± 0.1	0.48 ± 0.02	3.4 ± 0.2
250	Champion	1.37	6.1	0.53	4.4
	Average	1.37 ± 0.02	5.7 ± 0.2	0.53 ± 0.01	4.2 ± 0.2
300	Champion	1.40	6.5	0.61	5.5
	Average	1.40 ± 0.01	6.5 ± 0.1	0.58 ± 0.02	5.2 ± 0.2
350	Champion	1.37	5.4	0.51	3.8
	Average	1.37 ± 0.02	5.3 ± 0.1	0.49 ± 0.01	3.5 ± 0.2

Table S2. Photovoltaic performance of ST-PSCs based on NiO_X with different annealing temperature. All devices were measured under AM 1.5G 1-sun irradiation with a metal mask of 0.16 cm².

	Time (min)	V _{OC} (V)	$J_{ m SC}$ (mA cm ⁻²)	FF	PCE (%)
30	Champion	1.35	6.3	0.53	4.6
	Average	1.37 ± 0.01	5.8 ± 0.3	0.52 ± 0.02	4.2 ± 0.3
60	Champion	1.43	6.5	0.60	5.6
	Average	1.41 ± 0.01	6.4 ± 0.1	0.58 ± 0.01	5.3 ± 0.2
90	Champion	1.42	6.3	0.55	4.9
	Average	1.39 ± 0.02	6.2 ± 0.2	0.55 ± 0.01	4.7 ± 0.2

Table S3. Photovoltaic performance of ST-PSCs based on NiO_X with different annealing time. All devices were measured under AM 1.5G 1-sun irradiation with a metal mask of 0.16 cm².

Thickness (nm)		V _{OC} (V)	$J_{ m SC}$ (mA cm ⁻²)	FF	PCE (%)
25	Champion	1.39	6.2	0.53	4.6
	Average	1.37 ± 0.02	6.0 ± 0.2	0.51 ± 0.02	4.2 ± 0.3
25	Champion	1.44	6.6	0.62	5.8
35	Average	1.41 ± 0.02	6.4 ± 0.2	0.62 ± 0.01	5.6 ± 0.2
45	Champion	1.42	6.2	0.60	5.3
	Average	1.41 ± 0.02	6.2 ± 0.1	0.59 ± 0.01	5.1 ± 0.1

Table S4. Photovoltaic performance of ST-PSCs based on NiO_X with different thickness. All devices were measured under AM 1.5G 1-sun irradiation with a metal mask of 0.16 cm².

Sam	ples	V _{OC} (V)	$J_{ m SC}$ (mA cm ⁻²)	FF	PCE (%)	AVT (%)	LUE (%)
Spiro-	Champion	1.48	8.1	0.70	8.4	12.8	3.6
MoO _X	Average	1.46 ± 0.04	7.8 ± 0.2	0.68 ± 0.02	7.7 ± 0.3	72.0	5.0
NiO _X	Champion	1.44	6.5	0.62	5.8	51.2	2.0
	Average	1.43 ± 0.02	6.3 ± 0.1	0.61 ± 0.01	5.6 ± 0.2	31.3	3.0

Table S5. Photovoltaic performance, AVT, and LUE of ST-PSCs with spiro-OMeTAD $|MoO_X \text{ or } NiO_X$ film. All devices were measured under AM 1.5G 1-sun irradiation with a metal mask of 0.16 cm².

Buffer layers		V _{OC} (V)	$J_{ m SC}$ (mA cm ⁻²)	FF	PCE (%)
Duinting	Champion	1.44	6.5	0.62	5.8
Pristine	Average	1.43 ± 0.02	6.3 ± 0.1	0.61 ± 0.01	5.6 ± 0.2
1 DOLLT	Champion	1.55	6.6	0.67	6.9
1-P3H1	Average	1.50 ± 0.03	6.5 ± 0.2	0.65 ± 0.02	6.3 ± 0.3
2-P3HT	Champion	1.51	6.8	0.69	7.1
	Average	1.52 ± 0.02	6.7 ± 0.1	0.68 ± 0.01	6.9 ± 0.1
5-P3HT	Champion	1.48	6.9	0.65	6.6
	Average	1.39 ± 0.06	7.0 ± 0.3	0.63 ± 0.01	6.2 ± 0.3
	Champion	1.44	6.1	0.54	4.8
PTAA	Average	1.38 ± 0.04	5.9 ± 0.2	0.54 ± 0.02	4.4 ± 0.2
MoO _X	Champion	1.26	6.9	0.47	4.1
	Average	1.27 ± 0.02	6.3 ± 0.3	0.42 ± 0.03	3.4 ± 0.4

Table S6. Photovoltaic performance of ST-PSCs with different buffer layers. All devices were measured under AM 1.5G 1-sun irradiation with a metal mask of 0.16 cm².

Table S7. Calculated valence band ($E_{\rm VE}$)) from $E_{\text{cut-off}}$, and $E_{\rm F, edge}$	for the C	sPbBr ₃ , NiO	_X , P3HT, and
P3HT NiO _X .					

Samples	$E_{ m cut-off}$ (eV)	$E_{ m F, edge} \ (eV)$	$E_{\rm VB}$ (eV)
CsPbBr ₃	17.62	2.06	-5.66
NiO _X	17.66	1.89	-5.45
РЗНТ	17.82	1.46	-4.86
P3HT NiO _X	17.72	1.93	-5.43

Table S8. F	Fitted results of the TRP	L curves of ST-PSCs wi	th NiO _X or P3H7	NiO_X film at sh	ort circuit
condition.					

Samples	A_1	$ au_1$ (ns)	A_2	$ au_2$ (ns)	$ au_{ m avg}$ (ns)*
NiO _X	0.18	1.0	0.82	3.8	3.7
P3HT NiO _X	0.15	0.8	0.85	2.9	2.8

* τ_{avg} was fitted by the equation: $\tau_{avg} = (A_i \tau_i^2 + A_i \tau_i^2)/(A_i \tau_i + A_i \tau_i)$, i=1, 2.

Supporting Information forTable S9. The reported results of inorganic ST-PSCs in recent years. (Reverse scan)

Device structures	Perovskite bandgaps (eV)	V _{OC} (V)	$J_{ m SC}$ (mA cm ⁻²)	FF	PCE (%)	AVT (%)	LUE (%)	Ref
ITO PTAA PEA-CsPbI ₃ PC ₆₁ BM BCP AZO ITO	1.78	1.17	10.7	0.78	9.8	31.9	3.1	2
FTO TiO ₂ CsPbI ₃ PQDs Spiro-OMeTAD MoO _X Au MoO _X	1.78	1.19	15.0	0.63	11.3	23.4	2.6	3
ITO ZnO CsPbBr ₃ Spiro-OMeTAD PH1000	2.30	1.38	6.2	0.71	6.0	<43.6	<2.6	4
ITO SnO ₂ CsPbBr ₃ P3HT ITO-NPs Ag-NWs	2.30	1.32	6.3	0.68	5.6	41.6	2.3	5
$ITO P3CT\text{-}N CsPbI_2Br PCBM C_{60} BCP Ag MoO_X$	1.90	1.11	13.2	0.75	11.0	21.2	2.3	6
$FTO SnO_2 CsPbIBr_2 Spiro-OMeTAD MoO_X Ag MoO_X$	2.08	1.18	8.7	0.69	7.1	29.3	2.1	7
$FTO NiO_X CsPbI_{3-X}Br_X ZnO Al-ZnO ITO$	N/A	1.00	7.9	0.59	4.7	35.4	1.7	8
FTO ZnO Ni-ZnO CsPbBr3 Spiro-OMeTAD ITO	2.30	0.94	15.0	0.35	4.9	35.5	1.7	9
FTO TiO2 CsPbI2Br Spiro-OMeTAD Ag nanowires	1.90	0.98	10.7	0.65	6.8	22.4	1.5	10
FTO SnO ₂ CsPbIBr ₂ NiO _X ITO	2.08	N/A	N/A	N/A	3.9	33.2	1.3	11
FTO SnO ₂ CsPbBr ₃ Spiro-OMeTAD MoO _X ITO	2.35	1.48	8.1	0.70	8.4	42.8	3.6	This work
FTO SnO ₂ CsPbBr ₃ P3HT E-beam NiO _X ITO	2.35	1.51	6.8	0.69	7.1	49.1	3.5	This work

Table S10. Photovoltaic performance of ST-PSCs with NiO_X or P3HT| NiO_X film prepared by different sputtering powers. All devices were measured under AM 1.5G 1-sun irradiation with a metal mask of 0.16 cm².

Samples		V _{OC} (V)	$J_{ m SC}$ (mA cm ⁻²)	FF	PCE (%)
30 W NiO _X	Champion	1.44	6.5	0.61	5.7
	Average	1.41 ± 0.02	6.3 ± 0.1	0.61 ± 0.01	5.4 ± 0.2
75 W NiO _X	Champion	1.40	6.5	0.59	5.4
	Average	1.38 ± 0.02	6.2 ± 0.3	0.58 ± 0.01	4.9 ± 0.2
P3HT 30 W NiO _X	Champion	1.54	6.8	0.72	7.6
	Average	1.51 ± 0.02	6.8 ± 0.2	0.70 ± 0.01	7.1 ± 0.2
P3HT 75 W NiO _X	Champion	1.51	6.8	0.69	7.1
	Average	1.48 ± 0.02	6.6 ± 0.1	0.69 ± 0.01	6.8 ± 0.1

Samples		V _{oc} (V)	$J_{ m SC}$ (mA cm ⁻²)	FF	PCE (%)
P3HT NiO _X	Champion	8.42	1.0	0.64	5.5
	Average	8.35 ± 0.05	1.0 ± 0.02	0.63 ± 0.01	5.2 ± 0.15

Table S11. Photovoltaic performance of ST-PSMs with P3HT|NiO_X film. All devices were measured under AM 1.5G 1-sun irradiation with a metal mask of 10 cm².

References

- H. Yin, P. Lv, B. Gao, Y. Zhang, Y. Zhu, M. Hu, B. Tan, M. Xu, F. Huang, Y.-B. Cheng, A. N. Simonov and J. Lu, *J. Mater. Chem. A*, 2022, **10**, 25652-25660.
- Z. Zhang, R. Ji, X. Jia, S.-J. Wang, M. Deconinck, E. Siliavka and Y. Vaynzof, *Adv. Funct. Mater.*, 2023, 2307471.
- J. Kim, D. Kim, W. Kim, S. Woo, S.-W. Baek, M. J. Ko and Y. Kim, *Chem. Eng. J.*, 2023, 469, 143824.
- W. Chen, J. Zhang, G. Xu, R. Xue, Y. Li, Y. Zhou, J. Hou and Y. Li, *Advanced Materials*, 2018, 30, 1800855.
- 5. B. Parida, S. Yoon and D.-W. Kang, Nanomaterials, 2021, 11, 1489.
- 6. X. Feng, S. Fu, R. Miao, L. Qian, Y. Kong, H. Ji, L. Ai, J. Fang, W. Wang and W. Song, *Solar Energy Materials and Solar Cells*, 2022, **240**, 111683.
- Y. Zhao, R. Ge, J. Zheng, L. Chen, X. Wang, Y. Zheng, L. Zhong, Y. Zhu, X. Xu, G. Xu and X. Xiao, *Energy Technol.*, 2023, 11, 2300611.
- J. Lin, M. Lai, L. Dou, C. S. Kley, H. Chen, F. Peng, J. Sun, D. Lu, S. A. Hawks, C. Xie, F. Cui,
 A. P. Alivisatos, D. T. Limmer and P. Yang, *Nat. Mater.*, 2018, 17, 261-267.
- 9. T. Das, R. Nag, N. K. Rana, M. Nayak, R. Paramanik, A. Bera, S. K. Saha and A. Guchhait, *Energy Fuels*, 2023, **37**, 10642-10651.
- X. Yang, J. Han, W. Ruan, Y. Hu, Z. He, X. Jia, S. Zhang and D. Wang, *Chin. Chem. Lett.*, 2022, 33, 1425-1429.
- R. Ge, Y. Zhao, C. Jiang, J. Zheng, L. Chen, Y. Zheng, G. Xu and X. Xiao, *Sci. China Mater.*, 2023, 66, 3261-3270.