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SEM-EDS characterization 

 

Figure S1. (a) Scanning electron microscopy image of Ni-Co NSAs/NF. (b) SEM-EDS 

measurement of Ni-Co NSAs/NF. 
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Figure S2. SEM-EDS measurement of Ni-Co-S NSAs/NF. 

 

 

 

XPS spectra 

 

Figure S3. XPS spectrum for the Ni-Co-S NSAs/NF. 
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Electrochemical characterization 

 

 

Figure S4. LSVs with iR correction of the NF, Co-MOF NSAs/NF, and Ni-Co9S8 

NSAs/NF under 1 M KOH alkaline conditions (2
nd

 Parallel measurement). 

 

 

Figure S5. LSVs with iR correction of the NF, Co-MOF NSAs/NF, and Ni-Co9S8 

NSAs/NF under 1 M KOH and 1 M EG conditions (3
rd

 Parallel measurement). 
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Figure S6. The CV curves of (a)NF, (b)Co-MOF NSAs/NF, and (c)Ni-Co9S8 NSAs/NF after 

50 cycles at different scanning rates. 

 

 

 

 

 

Figure S7. The calculated Cdl for the NF, Co-MOF NSAs/NF, and Ni-Co9S8 NSAs/NF based 

electrodes derived from Figure S4. 
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Fig S8. CVs with scanning rate from 10 to 100 mV s
-1

 in alkaline media, linear fitting of the 

anodic and cathodic peak current with the scanning rate, and linear fitting of the anodic and 

cathodic peak current with the square root of scanning rate for the (a)NF, (b)Co-MOF NSAs/NF, 

and (c)Ni-Co9S8 NSAs/NF based electrodes. 

As shown in Fig. S8, when increasing the sweep rate, the position of the anodic peak shifted to 

higher potential values and the cathodic peak moved to lower potentials for four electrodes in 

1.0 M. The current of both anodic and cathodic peaks rose linearly with increasing scan rate. 

From the average slope of the anodic and cathodic peaks vs. 𝑣, the surface coverage of redox 

species (*) was estimated:  

𝐼𝑝 = (𝑛2𝐹2
/ 4𝑅𝑇)𝐴∗𝑣 

where n, F, R, T and A are the number of transferred electrons (assumed to be 1), the Faraday 

constant (96485 C mol
-1

), the gas constant (8.314 J K
-1

 mol
-1

), temperature and the geometric 

surface area of the glassy carbon electrodes (0.196 cm
2
), respectively. 

Also, a linear relationship could be fitted to the dependence of the peak current density with the 
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square root of the voltage scanning rate for these four electrodes in 1 M KOH. This dependence 

is generally related with a diffusion-limited Ni (OH)2  NiOOH redox reaction, where the 

proton diffusion within the particle is considered the diffusion process that limits the reaction 

rate:  

𝐼𝑝 = 2.69 × 10
5𝑛3⁄2𝐴𝐷1⁄2𝐶𝑣1⁄2

 

where Ip is the peak current, n is the number of transferred electrons, A is the geometric surface 

area of the GC, D is the diffusion coefficient, C is the proton concentration and was estimated to 

be 3.97 g cm
-3

, we estimated at 0.043 mol cm
-3

, and υ is the potential scan rate respectively. 

 

 

 

Figure S9. Surface coverage of redox species (*) and diffusion coefficient (D) calculation 

for the NF, Co-MOF NSAs/NF, and Ni-Co9S8 NSAs/NF based electrodes. 
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Figure S10. The Nyquist plots of the NF, Co-MOF NSAs/NF, and Ni-Co9S8 NSAs/NF based 

electrodes at 1.5 V vs. RHE in 1 M KOH containing 1 M EG. 

 

 

Figure S11. CP profile to generate a current density from 0.1 to 1.0 mA cm
−2

 for the Ni-Co9S8 

NSAs/NF based electrode. 

 

 

 

 

 

 

 

 

 

0 2000 4000
1.5

1.8

2.1

2.4

E
 (

V
 v

s
. 
R

H
E

)

T (s)

1 A cm-2

0.1 A cm-2



S9 

 

Figure S12.
1
H NMR spectra of electrolyte after 6 h CA test on Ni-Co9S8 NSAs/NF 

electrode.  

 

 

 

 

 

 

 

 

Figure S13. Another Long-term EGOR CA results at 1.5 V vs. RHE for the Ni-Co9S8 

NSAs/NF electrode. 
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Figure S14. (a) Liquid phase detection plots of EG at different times in a continuous 12h CA 

test. (b) EG concentration obtained by labelling. 

 

 

Figure S15. (a) Ion chromatographic detection plots at different times in the CA test and (b) 

concentrations detected by ethanoic acid. 
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Figure S16. XRD patterns the spent Ni-Co9S8 NSAs/NF based electrode after 2 h and 12 h 

CA operation in 1 M KOH and 1 M EG. 

 

 

Figure S17. SEM  images and SEM-EDS measurements of Ni-Co9S8 NSAs/NF based 

electrode after 2 h CA operation in 1 M KOH and 1 M EG. 
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Figure S18. SEM  images and SEM-EDS measurements of Ni-Co9S8 NSAs/NF based 

electrode after 12 h CA operation in 1 M KOH and 1 M EG. 

 

 

Figure S19. (a) XPS spectra and high-resolution (b) Ni 2p3/2, (c) Co 2p3/2 and (d) S 2p 

XPS spectra for Ni-Co9S8 NSAs/NF based electrode after 2 h CA operation in 1 M KOH 

and 1 M EG. 
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Figure S20. (a) XPS spectra and high-resolution (b) Ni 2p3/2, (c) Co 2p3/2 and (d) S 2p 

XPS spectra for Ni-Co9S8 NSAs/NF based electrode after 12 h CA operation in 1 M KOH 

and 1 M EG. 

 

 

 

Figure S21. Standard EG profile for LC. 
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Figure S22. Another 2 parallel measurements for LC profile of PET hydrolysis products and 

EG yields for different amounts of PET hydrolysis. 

 

 

Figure S23. Another 2 parallel measurements for LSV curves with iR correction for Ni-Co9S8 

NSAs/NF at different EG concentrations in 1 M KOH. 
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Table S1 Comparative Table of performances of different catalysts for ethylene glycol oxidation reaction in alkaline medium.  

Catalyst 
Current density   

(mA cm
-2

) 

Potential   

(V vs. RHE) 
Electrolyte 

Stability 

Decay (%) time 
Main product and FE Reference 

Ni/WC NPs@C 68 1.6 
1.0 M KOH + 1.0 M 

EG 
n.a. n.a. [1] 

 

Ni(OH)2-NZB-MW/CPE  
14 1.6 

1.6 M NaOH + 0.14 M 

EG 
35.7%@0.28h n.a. [2] 

Ni NPs/ITO 1.6 1.6 
0.2 M NaOH + 0.03 M 

EG 
21%@0.8h n.a. [3] 

FeCoNi/C 18 1.2 
1.0 M KOH + 1.0 M 

EG 
95%@0.14h 

glycolate (~40%) 

oxalate (~40%) 
[4] 

NiSe2 /C 103 1.6 1.0 M KOH + 1 M EG 45.4%@10h 

formate (83.4%) 

oxalate (5.4%) 

glycolate (7.4%) 

[5] 

rGO-NiMn 47.5 1.5 1.0 M KOH + 1 M EG 26.3%@2h oxalate (n.a.) [6] 

Ni-Co Oxides 55 1.5 1 M KOH + 1 M EG n.a n.a. [7] 

NiCu60s/NF 75 1.47 1 M KOH + 0.3 M EG ~33%@1h 
formate(n.a.) 

glycolate(n.a.) 
[8] 

Co-Ni/CP 150 1.8 1 M KOH + 1 M EG n.a@24h glycolate (96.4%) [9] 

Ni-Co-S NSAs/NF 140 1.5 1 M KOH + 1 M EG ~40%@24h formate(90%) 
This 

work 
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