Supporting Information

"Gating Effect" of g-C3N4 Encapsulated Pt-based Catalysts for Hydrogenation and Bamberger Rearrangement of Nitroaromatics

Chong Yao, Jinjin Shan, Jie Liu, Jie Luo, Limei Pan, Jinghui Lyu, Feng Feng, Lili Lin, Chun-shan Lu, Ying Zheng, JianGuo Wang, Qingtao Wang*, Qunfeng Zhang*, Xiaonian Li*

C. Yao, J. J. Shan, J. Liu, J. Luo, L. M. Pan, J. H. Lyu, F. Feng, L. L. Lin, C. S. Lu, J.
G. Wang, Q. T. Wang, Q. F. Zhang, X. N. Li
State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology,
College of Chemical Engineering, Zhejiang University of Technology, Hangzhou
310014, China.

E-mail: qtwang @zjut.edu.cn, zhang qf @zjut.edu.cn, xnli @zjut.edu.cn

Y. Zheng

Department of Chemical and Biochemical Engineering, Western University, London, ON, N6A 5B9, Canada

Fig. S1 Catalyst performance and stability testing of a) Pt/C, b) Pt/C@C and c) Pt/C@g-C₃N₄.

Fig. S2 The elemental reaction steps of intermediates on the Pt/C surface. T1: ph-NO₂, T2: ph-NO₂ adsorption, TS1: ph-NO₂-H, T3: ph-NOOH, T4: ph-NO, T5: ph-NOH, TS2: ph-NOH-H, T6: ph-NHOH, T7: ph-NHOH desorption.

Fig. S3 The elemental reaction steps of intermediates on the Pt/C@C surface. T1: ph-NO₂, T2: ph-NO₂ adsorption, TS1: ph-NO₂-H, T3: ph-NOOH, T4: ph-NO, T5: ph-NOH, TS2: ph-NOH-H, T6: ph-NHOH, T7: ph-NHOH desorption.

Fig. S4 The elemental reaction steps of intermediates on the $Pt/C@g-C_3N_4$ surface. T1: ph-NO₂, T2: ph-NO₂ adsorption, TS1: ph-NO₂-H, T3: ph-NOOH, T4: ph-NO, T5: ph-NOH, TS2: ph-NOH-H, T6: ph-NHOH, T7: ph-NHOH desorption.

Fig. S5 Nitroaromatics hydrogenation-Bamberger rearrangements of a) 1-chloro-3-nitrobenzene and H_2O , b) 2-nitrotoluene and CH_3OH .

Pt/C@C

Fig. S6 Experiment on color change of WO₃ upon hydrogen spillover reduction.

Fig. S7 H₂-TPD-MS results of Pt/C, Pt/C@C, and Pt/C@g-C₃N₄.

Fig. S8 BET results of H₂ adsorption curves for Pt/C, Pt/C@C, and Pt/C@g-C₃N₄.

Fig. S9 The H_2 dissociation energy of different adsorption sites on the Pt/C@g-C₃N₄ surface g-C₃N₄.

Fig. S10 The H₂ dissociation energy of Pt/C, Pt/C@C, and Pt/C@g-C₃N₄.

Fig. S11 The H_2 dissociation energy of different adsorption sites on the pure g- C_3N_4 surfaces.