Supplementary Information (SI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2024

## **Supplementary Information**

# High-throughput computational screening of novel MA<sub>2</sub>Z<sub>4</sub>-type Janus structures with excellent photovoltaic and photocatalytic properties

Yongli Yang<sup>1,2</sup>, Yadong Yu<sup>2</sup>\*, Zhe Liu<sup>2</sup>\*, Lijun Shang<sup>1</sup>, Pan Xiang<sup>2</sup>, Yu Xin<sup>2</sup>, Tong Zhang<sup>2</sup>, Zhonglu Guo<sup>1</sup>\*, Mengyan Dai<sup>2</sup>\*

<sup>1</sup>Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China <sup>2</sup>Chemical Defense Institute, Academy of Military Sciences, Beijing 102205, China \*Corresponding Authors: <u>yuyadong36@163.com</u> (Yadong Yu), <u>zheliu\_academia@hotmail.com</u> (Zhe Liu), zlguo@hebut.edu.cn (Zhonglu Guo), daidecai0558@163.com (Mengyan Dai)

#### **Calculation details**

The formation energy is calculated as follows

where  $E_{total}$  represents the total energy of the structure in a unit cell,  $n_i$  represents the number of the ith atom, and  $\mu_i$  is the cohesion energy contained in the ith atom. The formation energies obtained are shown in the following table S1.

Phonon dispersion calculations based on VASP-DFPT (Density Functional Perturbation Theory)<sup>1, 2</sup> are used to investigate their dynamic stability (both  $MA_2Z_4$  are  $4 \times 4 \times 1$  supercells). The phonon dispersion curve is shown in Figure S1S2.

The thermal stability of the  $MA_2Z_4$  structure was evaluated by performing ab initio arithmetic molecular dynamics (AIMD)1 simulations at 300 K, where sufficiently large supercells containing more than 100 atoms were used to reduce lattice translation constraints. The system was stabilized at 300 K for 5 ps with a time step of 2 fs and the Nosè algorithm was used to control the temperature.

Carrier mobility is estimated by means of the deformation potential (DP) theory defined below:

$$\mu_{2D} = \frac{2e\hbar^3 C_{2D}}{3k_B T |m*|^2 E_i^2}$$
 S(2)

where  $e, \hbar, k_B$  and T are the electron charge, the approximate Planck constant, the Boltzmann constant and the temperature (300 K), respectively.  $C_{2D}$  is the modulus of elasticity under uniaxial strain along the strain direction, calculated as follows:

where  $S_0$  is the equilibrium area.  $E_i$  is the strain–induced band–edge energy of the CBM of the electron and the VBM of the hole, calculated as follows:

$$E_i = \partial E_{edge} / \partial (\Delta a / a_0)$$
 S(4)

where  $E_{edge}$  is the band edge energy of CBM for electrons and VBM for holes induced by uniaxial strain.  $m^*$  is the effective mass of the carrier, calculated as follows:

$$m^* = \hbar^2 / (\partial^2 E / \partial k^2) \qquad S(5)$$

The work function is the minimum amount of energy that must be supplied to cause an electron to immediately escape from a solid surface. The defining formula for the work function is:

$$W = -e\Phi - E_F \qquad \qquad S(6)$$

where -e is the charge of an electron,  $\Phi$  is the electrostatic potential in the vacuum nearby the surface, and  $E_F$  is the Fermi level (electrochemical potential of electrons) inside the material.

The investigation of optical properties begins with the calculation of the material's dielectric function  $\varepsilon(\omega)$  as follows<sup>3</sup>:

$$\varepsilon(\omega) = \varepsilon_1(\omega) + i\varepsilon_2(\omega)$$
 S(7)

where  $\varepsilon_1(\omega)$  and  $\varepsilon_2(\omega)$  are the real and imaginary parts of the dielectric function, and  $\omega$  is the photon frequency. The imaginary part of the dielectric function  $\varepsilon_2(\omega)$  was obtained from the following equation:

$$\varepsilon_{2}(\omega) = \frac{4\pi^{2}e^{2}}{\Omega} \lim_{q \to 0} \frac{1}{q^{2}} \times \sum_{c,v,k} 2w_{k} \delta(E_{c} - E_{v} - \omega) |\langle c|\boldsymbol{e} \cdot \boldsymbol{q}|v \rangle|^{2} \qquad S(8)$$

where  $\langle c | \boldsymbol{e} \cdot \boldsymbol{q} | v \rangle$  is the integrated optical transitions from the valence states (v) to the conduction states (c),  $\boldsymbol{e}$  is the polarization direction of the photon and  $\boldsymbol{q}$  is the electron momentum operator. The integration over  $\boldsymbol{k}$  is performed by summation over special kpoints with a corresponding weighting factor  $w_{\boldsymbol{k}}$ . The real part of the dielectric function  $\varepsilon_1(\omega)$  can be determined from the Kramers-Kronig relation given by:

where P denotes the principle value and  $\eta$  is the complex shift parameter.

Absorption coefficient  $\alpha(\omega)$  can be calculated from the real  $\varepsilon_1(\omega)$  and the imaginary  $\varepsilon_2(\omega)$  parts:

$$\alpha(\omega) = \sqrt{2}\omega \left( \sqrt{\varepsilon_1^2(\omega) + \varepsilon_2^2(\omega)} - \varepsilon_1(\omega) \right)^{\frac{1}{2}}$$
  $S(10)$ 

Additionally, in order to obtain the more accurate optical absorption of 2D materials, the optical absorption rate was calculated as follows:

Where  $R = \left|\frac{\tilde{\sigma}/2}{1+\tilde{\sigma}/2}\right|^2$  is the normalized reflectance,  $\tilde{\sigma}(\omega) = \sigma_{2D}(\omega)/\varepsilon_0 c$  is the normalized conductivity.  $\sigma_{2D}(\omega)$  denotes the in-plane 2D optical conductivity, which directly related to the corresponding  $\sigma_{3D}(\omega)$ component through the equation of  $\sigma_{2D}(\omega) = L\sigma_{3D}(\omega)$ , where L is the slab thickness in the simulation cell, and 3D optical conductivity was obtained from  $\sigma_{3D}(\omega) = i[1 - \varepsilon(\omega)]\varepsilon_0\omega$  base on the Maxwell equation. For  $\varepsilon(\omega)$ ,  $\varepsilon_0$ , and  $\omega$ , they are the frequency-dependent complex dielectric function, permittivity of vacuum, and frequency of the incident wave, respectively.

For hydrogen evolution reaction (HER), the reaction equation at PH=0 is as follows:

$$H^+ + * + e^- \to H^* \tag{12}$$

$$H^* + H^+ + e^- \to H_2 \tag{13}$$

where \* denotes the active site on the surface of the structure, H\* denotes the hydrogen atoms on the surface of the adsorbed structure. The calculation of Gibbs free energy ( $\Delta G_{H*}$ ) under acidic conditions is as follows<sup>4</sup>:

Therein  $\Delta E$  denotes the energy difference between the hydrogen adsorption state and the independent state,  $\Delta E_{ZPE}$  denotes the zero-point energy difference,  $\Delta S$  denotes the entropy value difference, and T denotes the temperature (298.15 K).

The  $\Delta G_{H^*}$  under the influence of different PH were calculated separately with the following equations:

$$\Delta G_{H^*} = G_{H^*} - 1/2G_{H_2} - G^* + 0.059 \times pH - eU \qquad S(15)$$

where  $0.059 \times pH$  is the free energy contribution under the effect of pH, eU denotes the influence of extra potential bias provided by the electrons or holes, and U is the electrode potential relative to the standard hydrogen electrode (SHE).



#### **Supporting Figures**



Fig. S1 Phonon dispersion curves for the symmetric structure of MA<sub>2</sub>Z<sub>4</sub>.







Fig. S2 Phonon dispersion curves for the asymmetric Janus structure of MA<sub>2</sub>Z<sub>4</sub>.





Fig. S3 Total potential energy and corresponding snapshots of symmetric MA<sub>2</sub>Z<sub>4</sub> after 5 ps stabilization at 300 K obtained in AIMD simulations.







Fig. S4 The total potential energy and corresponding snapshots of the Janus MA<sub>2</sub>Z<sub>4</sub> after stabilization at 300 K for 5 ps were obtained in the AIMD simulations.





Fig. S5 Energy band structure diagrams of symmetric  $MA_2Z_4$  structures.









Fig. S8 TDOS and PDOS of asymmetric Janus MA<sub>2</sub>Z<sub>4</sub> structures.















Fig. S11 Light absorption coefficients of Janus MA<sub>2</sub>Z<sub>4</sub> and symmetric MA<sub>2</sub>Z<sub>4</sub>.



Fig. S12 HER adsorption energy at different PH.

### **Supporting Tables**

Table S1Formation energy of H phase symmetric MA2Z4 structures

|                                     |           |                                     | synnic    |                                    | 010105    |
|-------------------------------------|-----------|-------------------------------------|-----------|------------------------------------|-----------|
| Structure                           | $E_f(eV)$ | Structure                           | $E_f(eV)$ | Structure                          | $E_f(eV)$ |
| H-CrSi <sub>2</sub> As <sub>4</sub> | -1.53621  | H-CrGe <sub>2</sub> As <sub>4</sub> | -1.63928  | H-CrC <sub>2</sub> As <sub>4</sub> | -1.56927  |
| H-CrSi <sub>2</sub> N <sub>4</sub>  | -4.55043  | H-CrGe <sub>2</sub> N <sub>4</sub>  | -3.73512  | H-CrC <sub>2</sub> N <sub>4</sub>  | -3.6433   |
| H-CrSi <sub>2</sub> P <sub>4</sub>  | -1.53206  | H-CrGe <sub>2</sub> P <sub>4</sub>  | -1.54771  | H-CrC <sub>2</sub> P <sub>4</sub>  | -1.86761  |
| H-CrSi <sub>2</sub> S <sub>4</sub>  | -2.1434   | H-CrGe <sub>2</sub> S <sub>4</sub>  | -2.17696  | $H-CrC_2S_4$                       | -1.40492  |
| H-CrSi <sub>2</sub> Se <sub>4</sub> | -1.42037  | H-CrGe <sub>2</sub> Se <sub>4</sub> | -1.51632  | H-CrC <sub>2</sub> Se <sub>4</sub> | -0.65914  |
| H-CrSi <sub>2</sub> Te <sub>4</sub> | -1.07655  | H-CrGe <sub>2</sub> Te <sub>4</sub> | -1.20285  | H-CrC <sub>2</sub> Te <sub>4</sub> | -0.36513  |
| H-HfSi <sub>2</sub> As <sub>4</sub> | -1.7447   | H-HfGe <sub>2</sub> As <sub>4</sub> | -1.85079  | H-HfC <sub>2</sub> As <sub>4</sub> | -1.69599  |
| H-HfSi <sub>2</sub> N <sub>4</sub>  | -4.89378  | H-HfGe <sub>2</sub> N <sub>4</sub>  | -4.63656  | H-HfC <sub>2</sub> N <sub>4</sub>  | -3.29147  |
| H-HfSi <sub>2</sub> P <sub>4</sub>  | -1.5682   | H-HfGe <sub>2</sub> P <sub>4</sub>  | -2.00537  | H-HfC <sub>2</sub> P <sub>4</sub>  | -1.86402  |
| $H-HfSi_2S_4$                       | -2.55749  | H-HfGe <sub>2</sub> S <sub>4</sub>  | -3.04349  | $H-HfC_2S_4$                       | -1.64121  |
| H-HfSi <sub>2</sub> Se <sub>4</sub> | -1.85125  | H-HfGe <sub>2</sub> Se <sub>4</sub> | -2.37868  | H-HfC <sub>2</sub> Se <sub>4</sub> | -0.92946  |
| H-HfSi <sub>2</sub> Te <sub>4</sub> | -1.46648  | H-HfGe <sub>2</sub> Te <sub>4</sub> | -2.01203  | H-HfC <sub>2</sub> Te <sub>4</sub> | -0.657    |
| H-MoSi <sub>2</sub> As <sub>4</sub> | -1.52403  | H-MoGe <sub>2</sub> As <sub>4</sub> | -1.62908  | H-MoC <sub>2</sub> As <sub>4</sub> | -1.54983  |
| H-MoSi <sub>2</sub> N <sub>4</sub>  | -4.64147  | H-MoGe <sub>2</sub> N <sub>4</sub>  | -3.87599  | H-MoC <sub>2</sub> N <sub>4</sub>  | -3.4213   |
| H-MoSi <sub>2</sub> P <sub>4</sub>  | -2.13252  | H-MoGe <sub>2</sub> P <sub>4</sub>  | -1.46724  | H-MoC <sub>2</sub> P <sub>4</sub>  | -1.80966  |
| H-MoSi <sub>2</sub> S <sub>4</sub>  | -2.23908  | H-MoGe <sub>2</sub> S <sub>4</sub>  | -2.27387  | $H-MoC_2S_4$                       | -1.39711  |
| H-MoSi <sub>2</sub> Se <sub>4</sub> | -1.5073   | H-MoGe <sub>2</sub> Se <sub>4</sub> | -1.59396  | H-MoC <sub>2</sub> Se <sub>4</sub> | -0.68717  |
| H-MoSi <sub>2</sub> Te <sub>4</sub> | -1.12603  | H-MoGe <sub>2</sub> Te <sub>4</sub> | -1.24886  | H-MoC <sub>2</sub> Te <sub>4</sub> | -0.40269  |
| $H-ScSi_2As_4$                      | -1.42546  | H-ScGe <sub>2</sub> As <sub>4</sub> | -1.52309  | $H-ScC_2As_4$                      | -1.39678  |
| $H-ScSi_2N_4$                       | -4.28884  | H-ScGe <sub>2</sub> N <sub>4</sub>  | -3.616    | $H-ScC_2N_4$                       | -2.94745  |
| $H-ScSi_2P_4$                       | -1.25203  | H-ScGe <sub>2</sub> P <sub>4</sub>  | -1.26996  | $H-ScC_2P_4$                       | -1.54435  |
| $H-ScSi_2S_4$                       | -2.23919  | H-ScGe <sub>2</sub> S <sub>4</sub>  | -2.27827  | $H-ScC_2S_4$                       | -1.34176  |
| $H-ScSi_2Se_4$                      | -1.62636  | $H-ScGe_2Se_4$                      | 908611    | $H-ScC_2Se_4$                      | -0.66479  |
| H-ScSi <sub>2</sub> Te <sub>4</sub> | -1.20581  | H-ScGe <sub>2</sub> Te <sub>4</sub> | -1.36069  | H-ScC <sub>2</sub> Te <sub>4</sub> | -0.34624  |
| H-TaSi <sub>2</sub> As <sub>4</sub> | -1.73217  | H-TaGe <sub>2</sub> As <sub>4</sub> | -1.82522  | H-TaC <sub>2</sub> As <sub>4</sub> | -1.69654  |
| H-TaSi <sub>2</sub> N <sub>4</sub>  | -4.89502  | H-TaGe <sub>2</sub> N <sub>4</sub>  | -4.1775   | H-TaC <sub>2</sub> N <sub>4</sub>  | -3.46986  |
| H-TaSi <sub>2</sub> P <sub>4</sub>  | -1.60968  | H-TaGe <sub>2</sub> P <sub>4</sub>  | -1.64091  | H-TaC <sub>2</sub> P <sub>4</sub>  | -1.92664  |
| $H-TaSi_2S_4$                       | -2.48561  | H-TaGe <sub>2</sub> S <sub>4</sub>  | -2.54342  | $H-TaC_2S_4$                       | -1.52162  |
| H-TaSi <sub>2</sub> Se <sub>4</sub> | -1.74104  | H-TaGe <sub>2</sub> Se <sub>4</sub> | -1.84757  | $H-TaC_2Se_4$                      | -0.8384   |
| H-TaSi <sub>2</sub> Te <sub>4</sub> | -1.3351   | H-TaGe <sub>2</sub> Te <sub>4</sub> | -1.48409  | H-TaC <sub>2</sub> Te <sub>4</sub> | -0.57411  |
| $H-TiSi_2As_4$                      | -1.61005  | H-TiGe <sub>2</sub> As <sub>4</sub> | -1.71538  | $H-TiC_2As_4$                      | -1.58024  |
| H-TiSi <sub>2</sub> N <sub>4</sub>  | -4.69403  | H-TiGe <sub>2</sub> N <sub>4</sub>  | -3.99473  | H-TiC <sub>2</sub> N <sub>4</sub>  | -3.43092  |
| H-TiSi <sub>2</sub> P <sub>4</sub>  | -2.11829  | H-TiGe <sub>2</sub> P <sub>4</sub>  | -1.5269   | H-TiC <sub>2</sub> P <sub>4</sub>  | -1.79553  |
| $H-TiSi_2S_4$                       | -2.19883  | H-TiGe <sub>2</sub> S <sub>4</sub>  | -2.36603  | $H-TiC_2S_4$                       | -1.46633  |
| H-TiSi <sub>2</sub> Se <sub>4</sub> | -1.58424  | H-TiGe <sub>2</sub> Se <sub>4</sub> | -1.69752  | $H-TiC_2Se_4$                      | -0.74335  |
| H-TiSi <sub>2</sub> Te <sub>4</sub> | -1.2341   | H-TiGe <sub>2</sub> Te <sub>4</sub> | -1.38386  | H-TiC <sub>2</sub> Te <sub>4</sub> | -0.48188  |
| H-VSi <sub>2</sub> As <sub>4</sub>  | -1.78022  | H-VGe <sub>2</sub> As <sub>4</sub>  | -1.8758   | H-VC <sub>2</sub> As <sub>4</sub>  | -1.78553  |
| H-VSi <sub>2</sub> N <sub>4</sub>   | -4.84383  | H-VGe <sub>2</sub> N <sub>4</sub>   | -4.07183  | H-VC <sub>2</sub> N <sub>4</sub>   | -3.77692  |
| H-VSi <sub>2</sub> P <sub>4</sub>   | -1.73466  | H-VGe <sub>2</sub> P <sub>4</sub>   | -1.73928  | $H-VC_2P_4$                        | -2.05502  |
| $H-VSi_2S_4$                        | -2.3912   | H-VGe <sub>2</sub> S <sub>4</sub>   | -2.44091  | $H-VC_2S_4$                        | -1.52521  |
| H-VSi <sub>2</sub> Se <sub>4</sub>  | -1.67258  | H-VGe <sub>2</sub> Se <sub>4</sub>  | -1.77744  | $H-VC_2Se_4$                       | -0.86367  |
| H-VSi <sub>2</sub> Te <sub>4</sub>  | -1.32609  | H-VGe <sub>2</sub> Te <sub>4</sub>  | -1.47082  | H-VC <sub>2</sub> Te <sub>4</sub>  | -0.61326  |

| H-WSi <sub>2</sub> As <sub>4</sub>  | -1.79064 | H-WGe <sub>2</sub> As <sub>4</sub>  | -1.89099 | H-WC <sub>2</sub> As <sub>4</sub>  | -1.7846  |
|-------------------------------------|----------|-------------------------------------|----------|------------------------------------|----------|
| H-WSi <sub>2</sub> N <sub>4</sub>   | -4.9912  | H-WGe <sub>2</sub> N <sub>4</sub>   | -4.19632 | H-WC <sub>2</sub> N <sub>4</sub>   | -3.70007 |
| H-WSi <sub>2</sub> P <sub>4</sub>   | -2.40938 | H-WGe <sub>2</sub> P <sub>4</sub>   | -1.74217 | H-WC <sub>2</sub> P <sub>4</sub>   | -2.06607 |
| H-WSi <sub>2</sub> S <sub>4</sub>   | -2.52713 | H-WGe <sub>2</sub> S <sub>4</sub>   | -2.54921 | $H-WC_2S_4$                        | -1.66244 |
| H-WSi <sub>2</sub> Se <sub>4</sub>  | -1.776   | H-WGe <sub>2</sub> Se <sub>4</sub>  | -1.85316 | H-WC <sub>2</sub> Se <sub>4</sub>  | -0.94815 |
| H-WSi <sub>2</sub> Te <sub>4</sub>  | -1.35792 | H-WGe <sub>2</sub> Te <sub>4</sub>  | -1.47774 | H-WC <sub>2</sub> Te <sub>4</sub>  | -0.45626 |
| H-NbSi <sub>2</sub> As <sub>4</sub> | -1.44653 | H-NbGe <sub>2</sub> As <sub>4</sub> | -1.54459 | H-NbC <sub>2</sub> As <sub>4</sub> | -1.4537  |
| H-NbSi <sub>2</sub> N <sub>4</sub>  | -4.56341 | H-NbGe <sub>2</sub> N <sub>4</sub>  | -3.85025 | H-NbC <sub>2</sub> N <sub>4</sub>  | -3.18256 |
| H-NbSi <sub>2</sub> P <sub>4</sub>  | -1.32455 | H-NbGe <sub>2</sub> P <sub>4</sub>  | -1.35434 | $H-NbC_2P_4$                       | -1.66902 |
| H-NbSi <sub>2</sub> S <sub>4</sub>  | -2.20329 | H-NbGe <sub>2</sub> S <sub>4</sub>  | -2.26193 | $H-NbC_2S_4$                       | -1.27631 |
| H-NbSi <sub>2</sub> Se <sub>4</sub> | -1.47859 | H-NbGe <sub>2</sub> Se <sub>4</sub> | -1.58625 | H-NbC <sub>2</sub> Se <sub>4</sub> | -0.58924 |
| H-NbSi <sub>2</sub> Te <sub>4</sub> | -1.10014 | H-NbGe <sub>2</sub> Te <sub>4</sub> | -1.25018 | H-NbC <sub>2</sub> Te <sub>4</sub> | -0.34493 |
| H-ZrSi <sub>2</sub> As <sub>4</sub> | -1.59347 | H-ZrGe <sub>2</sub> As <sub>4</sub> | -1.69801 | H-ZrC <sub>2</sub> As <sub>4</sub> | -1.57142 |
| H-ZrSi <sub>2</sub> N <sub>4</sub>  | -4.66275 | H-ZrGe <sub>2</sub> N <sub>4</sub>  | -4.03093 | $H\text{-}ZrC_2N_4$                | -3.05984 |
| H-ZrSi <sub>2</sub> P <sub>4</sub>  | -1.40312 | H-ZrGe <sub>2</sub> P <sub>4</sub>  | -1.44849 | $H-ZrC_2P_4$                       | -1.71953 |
| H-ZrSi <sub>2</sub> S <sub>4</sub>  | -2.38198 | H-ZrGe <sub>2</sub> S <sub>4</sub>  | -2.48195 | H-ZrC <sub>2</sub> S <sub>4</sub>  | -1.50525 |
| H-ZrSi <sub>2</sub> Se <sub>4</sub> | -1.69436 | H-ZrGe <sub>2</sub> Se <sub>4</sub> | -1.83438 | H-ZrC <sub>2</sub> Se <sub>4</sub> | -0.80868 |
| H-ZrSi <sub>2</sub> Te <sub>4</sub> | -1.14951 | H-ZrGe <sub>2</sub> Te <sub>4</sub> | -1.48824 | H-ZrC <sub>2</sub> Te <sub>4</sub> | -0.54328 |

#### Table S2Formation energy of T phase symmetric MA2Z4 structures

| Structure                           | $E_f(eV)$ | Structure                           | $E_f(eV)$ | Structure                          | $E_f(eV)$ |
|-------------------------------------|-----------|-------------------------------------|-----------|------------------------------------|-----------|
| T-CrSi <sub>2</sub> As <sub>4</sub> | -1.5511   | T-CrGe <sub>2</sub> As <sub>4</sub> | -1.6508   | T-CrC <sub>2</sub> As <sub>4</sub> | -1.537    |
| T-CrSi <sub>2</sub> N <sub>4</sub>  | -4.49288  | T-CrGe <sub>2</sub> N <sub>4</sub>  | -3.78382  | T-CrC <sub>2</sub> N <sub>4</sub>  | -3.468    |
| T-CrSi <sub>2</sub> P <sub>4</sub>  | -1.98958  | T-CrGe <sub>2</sub> P <sub>4</sub>  | -1.5433   | T-CrC <sub>2</sub> P <sub>4</sub>  | -1.82064  |
| T-CrSi <sub>2</sub> S <sub>4</sub>  | -2.12426  | T-CrGe <sub>2</sub> S <sub>4</sub>  | -2.12045  | $T-CrC_2S_4$                       | -1.46269  |
| T-CrSi <sub>2</sub> Se <sub>4</sub> | -1.34752  | T-CrGe <sub>2</sub> Se <sub>4</sub> | -1.14884  | $T-CrC_2Se_4$                      | -0.61724  |
| T-CrSi <sub>2</sub> Te <sub>4</sub> | -0.70589  | T-CrGe <sub>2</sub> Te <sub>4</sub> | -0.94443  | T-CrC <sub>2</sub> Te <sub>4</sub> | -0.33027  |
| T-HfSi <sub>2</sub> As <sub>4</sub> | -1.74432  | T-HfGe <sub>2</sub> As <sub>4</sub> | -1.85592  | T-HfC <sub>2</sub> As <sub>4</sub> | -1.70519  |
| T-HfSi <sub>2</sub> N <sub>4</sub>  | -4.93828  | T-HfGe <sub>2</sub> N <sub>4</sub>  | -4.35005  | T-HfC <sub>2</sub> N <sub>4</sub>  | -3.30124  |
| T-HfSi <sub>2</sub> P <sub>4</sub>  | -1.19925  | T-HfGe <sub>2</sub> P <sub>4</sub>  | -0.3817   | T-HfC <sub>2</sub> P <sub>4</sub>  | -1.87501  |
| $T-HfSi_2S_4$                       | -2.59429  | T-HfGe <sub>2</sub> S <sub>4</sub>  | -2.67479  | $T-HfC_2S_4$                       | -1.78399  |
| T-HfSi <sub>2</sub> Se <sub>4</sub> | -1.87271  | T-HfGe <sub>2</sub> Se <sub>4</sub> | -1.84263  | T-HfC <sub>2</sub> Se <sub>4</sub> | -0.91709  |
| T-HfSi <sub>2</sub> Te <sub>4</sub> | -1.24485  | T-HfGe <sub>2</sub> Te <sub>4</sub> | -1.20623  | T-HfC <sub>2</sub> Te <sub>4</sub> | -0.65717  |
| T-MoSi <sub>2</sub> As <sub>4</sub> | -1.52782  | T-MoGe <sub>2</sub> As <sub>4</sub> | -1.64113  | T-MoC <sub>2</sub> As <sub>4</sub> | -1.5132   |
| T-MoSi <sub>2</sub> N <sub>4</sub>  | -4.50542  | T-MoGe <sub>2</sub> N <sub>4</sub>  | -3.79711  | T-MoC <sub>2</sub> N <sub>4</sub>  | -3.28271  |
| T-MoSi <sub>2</sub> P <sub>4</sub>  | -2.04001  | T-MoGe <sub>2</sub> P <sub>4</sub>  | -1.47312  | T-MoC <sub>2</sub> P <sub>4</sub>  | -1.7565   |
| $T-MoSi_2S_4$                       | -2.12877  | T-MoGe <sub>2</sub> S <sub>4</sub>  | -2.16953  | $T-MoC_2S_4$                       | -1.37282  |
| T-MoSi <sub>2</sub> Se <sub>4</sub> | -1.36358  | T-MoGe <sub>2</sub> Se <sub>4</sub> | -1.49855  | T-MoC <sub>2</sub> Se <sub>4</sub> | -0.60782  |
| T-MoSi <sub>2</sub> Te <sub>4</sub> | -0.87196  | T-MoGe <sub>2</sub> Te <sub>4</sub> | -0.95342  | T-MoC <sub>2</sub> Te <sub>4</sub> | -0.36418  |
| T-ScSi <sub>2</sub> As <sub>4</sub> | -1.43117  | T-ScGe <sub>2</sub> As <sub>4</sub> | -1.54375  | $T-ScC_2As_4$                      | -1.40608  |
| T-ScSi <sub>2</sub> N <sub>4</sub>  | -4.36035  | T-ScGe <sub>2</sub> N <sub>4</sub>  | -3.75179  | T-ScC <sub>2</sub> N <sub>4</sub>  | -2.95526  |
| $T-ScSi_2P_4$                       | -1.97251  | T-ScGe <sub>2</sub> P <sub>4</sub>  | -1.27643  | $T-ScC_2P_4$                       | -1.55778  |
| $T$ - $ScSi_2S_4$                   | -2.30833  | T-ScGe <sub>2</sub> S <sub>4</sub>  | -2.27294  | $T-ScC_2S_4$                       | -1.40089  |
| T-ScSi <sub>2</sub> Se <sub>4</sub> | -1.54098  | T-ScGe <sub>2</sub> Se <sub>4</sub> | -1.53522  | $T-ScC_2Se_4$                      | -0.72684  |
| T-ScSi <sub>2</sub> Te <sub>4</sub> | -0.94383  | T-ScGe <sub>2</sub> Te <sub>4</sub> | -0.90861  | T-ScC <sub>2</sub> Te <sub>4</sub> | -0.34375  |

| T-TaSi <sub>2</sub> As <sub>4</sub> | -1.72198 | T-TaGe <sub>2</sub> As <sub>4</sub> | -1.89299 | T-TaC <sub>2</sub> As <sub>4</sub> | -1.69568 |
|-------------------------------------|----------|-------------------------------------|----------|------------------------------------|----------|
| T-TaSi <sub>2</sub> N <sub>4</sub>  | -4.85765 | T-TaGe <sub>2</sub> N <sub>4</sub>  | -4.20077 | T-TaC <sub>2</sub> N <sub>4</sub>  | -3.42461 |
| T-TaSi <sub>2</sub> P <sub>4</sub>  | -2.28187 | T-TaGe <sub>2</sub> P <sub>4</sub>  | -2.13653 | T-TaC <sub>2</sub> P <sub>4</sub>  | -1.91821 |
| $T-TaSi_2S_4$                       | -2.46455 | T-TaGe <sub>2</sub> S <sub>4</sub>  | -0.5596  | $T-TaC_2S_4$                       | -1.64813 |
| T-TaSi <sub>2</sub> Se <sub>4</sub> | -1.6546  | T-TaGe <sub>2</sub> Se <sub>4</sub> | -1.79115 | $T-TaC_2Se_4$                      | -0.83719 |
| T-TaSi <sub>2</sub> Te <sub>4</sub> | -1.19429 | T-TaGe <sub>2</sub> Te <sub>4</sub> | -1.0918  | T-TaC <sub>2</sub> Te <sub>4</sub> | -0.57685 |
| T-TiSi <sub>2</sub> As <sub>4</sub> | -1.81111 | T-TiGe <sub>2</sub> As <sub>4</sub> | -1.72396 | T-TiC <sub>2</sub> As <sub>4</sub> | -1.61246 |
| $T-TiSi_2N_4$                       | -4.79721 | T-TiGe <sub>2</sub> N <sub>4</sub>  | -4.12206 | T-TiC <sub>2</sub> N <sub>4</sub>  | -3.42972 |
| T-TiSi <sub>2</sub> P <sub>4</sub>  | -1.69661 | T-TiGe <sub>2</sub> P <sub>4</sub>  | -1.53292 | T-TiC <sub>2</sub> P <sub>4</sub>  | -1.83015 |
| T-TiSi <sub>2</sub> S <sub>4</sub>  | -2.36102 | T-TiGe <sub>2</sub> S <sub>4</sub>  | -2.48353 | $T-TiC_2S_4$                       | -1.62283 |
| T-TiSi <sub>2</sub> Se <sub>4</sub> | -1.57864 | T-TiGe <sub>2</sub> Se <sub>4</sub> | -1.75388 | $T-TiC_2Se_4$                      | -0.75634 |
| T-TiSi <sub>2</sub> Te <sub>4</sub> | -1.07956 | T-TiGe <sub>2</sub> Te <sub>4</sub> | -1.06497 | T-TiC <sub>2</sub> Te <sub>4</sub> | -0.43615 |
| T-VSi <sub>2</sub> As <sub>4</sub>  | -1.79358 | T-VGe <sub>2</sub> As <sub>4</sub>  | -1.89761 | T-VC <sub>2</sub> As <sub>4</sub>  | -1.78014 |
| T-VSi <sub>2</sub> N <sub>4</sub>   | -4.85948 | T-VGe <sub>2</sub> N <sub>4</sub>   | -4.13912 | T-VC <sub>2</sub> N <sub>4</sub>   | -3.70041 |
| T-VSi <sub>2</sub> P <sub>4</sub>   | -1.77239 | T-VGe <sub>2</sub> P <sub>4</sub>   | -1.76557 | T-VC <sub>2</sub> P <sub>4</sub>   | -2.04167 |
| $T-VSi_2S_4$                        | -2.4109  | T-VGe <sub>2</sub> S <sub>4</sub>   | -2.38913 | $T-VC_2S_4$                        | -1.68442 |
| T-VSi <sub>2</sub> Se <sub>4</sub>  | -1.65409 | T-VGe <sub>2</sub> Se <sub>4</sub>  | -1.78961 | $T-VC_2Se_4$                       | -0.86798 |
| T-VSi <sub>2</sub> Te <sub>4</sub>  | -1.22613 | T-VGe <sub>2</sub> Te <sub>4</sub>  | -1.26821 | T-VC <sub>2</sub> Te <sub>4</sub>  | -0.64419 |
| T-WSi <sub>2</sub> As <sub>4</sub>  | -1.85038 | T-WGe <sub>2</sub> As <sub>4</sub>  | -1.90214 | T-WC <sub>2</sub> As <sub>4</sub>  | -1.74249 |
| T-WSi <sub>2</sub> N <sub>4</sub>   | -4.80486 | T-WGe <sub>2</sub> N <sub>4</sub>   | -4.09966 | T-WC <sub>2</sub> N <sub>4</sub>   | -3.55408 |
| T-WSi <sub>2</sub> P <sub>4</sub>   | -2.30652 | T-WGe <sub>2</sub> P <sub>4</sub>   | -2.15299 | T-WC <sub>2</sub> P <sub>4</sub>   | -2.00976 |
| $T-WSi_2S_4$                        | -2.39804 | T-WGe <sub>2</sub> S <sub>4</sub>   | -2.43973 | $T-WC_2S_4$                        | -1.56022 |
| T-WSi <sub>2</sub> Se <sub>4</sub>  | -1.6157  | T-WGe <sub>2</sub> Se <sub>4</sub>  | -1.67523 | $T-WC_2Se_4$                       | -0.86096 |
| T-WSi <sub>2</sub> Te <sub>4</sub>  | -1.18264 | T-WGe <sub>2</sub> Te <sub>4</sub>  | -1.16778 | T-WC <sub>2</sub> Te <sub>4</sub>  | -0.51633 |
| T-NbSi <sub>2</sub> As <sub>4</sub> | -1.45194 | T-NbGe <sub>2</sub> As <sub>4</sub> | -1.56846 | T-NbC <sub>2</sub> As <sub>4</sub> | -1.4479  |
| T-NbSi <sub>2</sub> N <sub>4</sub>  | -4.53975 | T-NbGe <sub>2</sub> N <sub>4</sub>  | -3.87861 | T-NbC <sub>2</sub> N <sub>4</sub>  | -3.14413 |
| T-NbSi <sub>2</sub> P <sub>4</sub>  | -1.32485 | T-NbGe <sub>2</sub> P <sub>4</sub>  | -1.69598 | T-NbC <sub>2</sub> P <sub>4</sub>  | -1.65539 |
| T-NbSi <sub>2</sub> S <sub>4</sub>  | -2.18617 | T-NbGe <sub>2</sub> S <sub>4</sub>  | -1.78242 | $T-NbC_2S_4$                       | -1.42672 |
| T-NbSi <sub>2</sub> Se <sub>4</sub> | -1.50848 | T-NbGe <sub>2</sub> Se <sub>4</sub> | -1.39576 | T-NbC <sub>2</sub> Se <sub>4</sub> | -0.58621 |
| T-NbSi <sub>2</sub> Te <sub>4</sub> | -1.51507 | T-NbGe <sub>2</sub> Te <sub>4</sub> | -0.79837 | T-NbC <sub>2</sub> Te <sub>4</sub> | -0.38353 |
| T-ZrSi <sub>2</sub> As <sub>4</sub> | -1.60182 | T-ZrGe <sub>2</sub> As <sub>4</sub> | -1.7262  | T-ZrC <sub>2</sub> As <sub>4</sub> | -1.58788 |
| T-ZrSi <sub>2</sub> N <sub>4</sub>  | -4.69926 | T-ZrGe <sub>2</sub> N <sub>4</sub>  | -4.12463 | $T-ZrC_2N_4$                       | -3.08332 |
| T-ZrSi <sub>2</sub> P <sub>4</sub>  | -1.4071  | T-ZrGe <sub>2</sub> P <sub>4</sub>  | -1.44973 | T-ZrC <sub>2</sub> P <sub>4</sub>  | -1.73552 |
| T-ZrSi <sub>2</sub> S <sub>4</sub>  | -2.48172 | T-ZrGe <sub>2</sub> S <sub>4</sub>  | -2.49479 | T-ZrC <sub>2</sub> S <sub>4</sub>  | -1.67933 |
| T-ZrSi <sub>2</sub> Se <sub>4</sub> | -1.61098 | T-ZrGe <sub>2</sub> Se <sub>4</sub> | -1.68485 | $T-ZrC_2Se_4$                      | -0.79306 |
| T-ZrSi <sub>2</sub> Te <sub>4</sub> | -1.18479 | T-ZrGe <sub>2</sub> Te <sub>4</sub> | -1.07389 | T-ZrC <sub>2</sub> Te <sub>4</sub> | -0.50584 |
|                                     |          |                                     |          |                                    |          |

Table S3 Formation energy of asymmetric  $H-MA_2Z_4$  Janus structures

|           |                        | <u> </u>                 | •          |                        |           |  |
|-----------|------------------------|--------------------------|------------|------------------------|-----------|--|
| Structure | $E_f(eV)$              | 7) Structure             | $E_f(eV)$  |                        | $E_f(eV)$ |  |
| H-CrSiGeA | As <sub>4</sub> -1.366 | 23 H-CrCGeAs             | 4 -1.59844 | H-CrSiCAs <sub>4</sub> | -1.66695  |  |
| H-CrSiGe  | N <sub>4</sub> -4.105  | 45 H-CrCGeN <sub>4</sub> | -3.42759   | H-CrSiCN <sub>4</sub>  | -3.95802  |  |
| H-CrSiGe  | P <sub>4</sub> -1.527  | 87 H-CrCGeP <sub>4</sub> | -1.66665   | H-CrSiCP <sub>4</sub>  | -1.85087  |  |
| H-CrSiGe  | S <sub>4</sub> -2.144  | 41 H-CrCGeS <sub>4</sub> | -1.69714   | H-CrSiCS <sub>4</sub>  | -1.67321  |  |
| H-CrSiGes | Se <sub>4</sub> -1.455 | 21 H-CrCGeSe             | -1.02063   | H-CrSiCSe <sub>4</sub> | -1.00171  |  |
| H-CrSiGe  | Ге <sub>4</sub> -1.064 | 29 H-CrCGeTe             | -0.8259    | H-CrSiCTe <sub>4</sub> | -0.69743  |  |

| H-HfSiGeAs <sub>4</sub> | -1.80188 | H-HfCGeAs <sub>4</sub> | -1.78439 | H-HfSiCAs <sub>4</sub> | -1.85057 |
|-------------------------|----------|------------------------|----------|------------------------|----------|
| H-HfSiGeN4              | -4.55369 | H-HfCGeN <sub>4</sub>  | -3.66795 | H-HfSiCN <sub>4</sub>  | -4.04652 |
| H-HfSiGeP <sub>4</sub>  | -1.58375 | H-HfCGeP <sub>4</sub>  | -1.83137 | H-HfSiCP <sub>4</sub>  | -1.94328 |
| H-HfSiGeS4              | -2.60136 | H-HfCGeS <sub>4</sub>  | -2.15277 | H-HfSiCS <sub>4</sub>  | -2.10656 |
| H-HfSiGeSe4             | -1.91645 | H-HfCGeSe <sub>4</sub> | -1.46882 | H-HfSiCSe <sub>4</sub> | -1.39863 |
| H-HfSiGeTe <sub>4</sub> | -1.54028 | H-HfCGeTe <sub>4</sub> | -1.14284 | H-HfSiCTe <sub>4</sub> | -1.06871 |
| H-MoSiGeAs4             | -1.58236 | H-MoCGeAs <sub>4</sub> | -1.63811 | H-MoSiCAs4             | -1.70428 |
| H-MoSiGeN4              | -4.23105 | H-MoCGeN <sub>4</sub>  | -3.44157 | H-MoSiCN <sub>4</sub>  | -3.92125 |
| H-MoSiGeP <sub>4</sub>  | -2.04205 | H-MoCGeP <sub>4</sub>  | -1.75658 | H-MoSiCP <sub>4</sub>  | -1.87895 |
| H-MoSiGeS4              | -2.2499  | H-MoCGeS <sub>4</sub>  | -1.76548 | H-MoSiCS <sub>4</sub>  | -1.77623 |
| H-MoSiGeSe <sub>4</sub> | -1.54721 | H-MoCGeSe <sub>4</sub> | -1.09144 | H-MoSiCSe <sub>4</sub> | -1.06706 |
| H-MoSiGeTe <sub>4</sub> | -1.18682 | H-MoCGeTe <sub>4</sub> | -0.77586 | H-MoSiCTe <sub>4</sub> | -0.73034 |
| H-NbSiGeAs <sub>4</sub> | -1.50375 | H-ScCGeAs <sub>4</sub> | -1.46302 | H-ScSiCAs <sub>4</sub> | -1.53061 |
| H-NbSiGeN <sub>4</sub>  | -4.1886  | H-ScCGeN <sub>4</sub>  | -3.21557 | H-ScSiCN <sub>4</sub>  | -3.58331 |
| H-NbSiGeP4              | -1.3337  | H-ScCGeP <sub>4</sub>  | -1.405   | H-ScSiCP <sub>4</sub>  | -1.57326 |
| H-NbSiGeS4              | -2.22911 | H-ScCGeS <sub>4</sub>  | -1.85511 | H-ScSiCS <sub>4</sub>  | -1.75155 |
| H-NbSiGeSe <sub>4</sub> | -1.5304  | H-ScCGeSe <sub>4</sub> | -1.20225 | H-ScSiCSe <sub>4</sub> | -1.13049 |
| H-NbSiGeTe <sub>4</sub> | -1.17419 | H-ScCGeTe <sub>4</sub> | -0.89171 | H-ScSiCTe <sub>4</sub> | -0.8138  |
| H-ScSiGeAs <sub>4</sub> | -1.48104 | H-TaCGeAs <sub>4</sub> | -1.79874 | H-TaSiCAs <sub>4</sub> | -1.85904 |
| H-ScSiGeN <sub>4</sub>  | -3.93607 | H-TaCGeN <sub>4</sub>  | -3.66914 | H-TaSiCN <sub>4</sub>  | -4.10121 |
| H-ScSiGeP <sub>4</sub>  | -1.25656 | H-TaCGeP <sub>4</sub>  | -1.79773 | H-TaSiCP <sub>4</sub>  | -2.01707 |
| H-ScSiGeS <sub>4</sub>  | -2.30731 | H-TaCGeS <sub>4</sub>  | -2.06128 | H-TaSiCS <sub>4</sub>  | -2.03189 |
| H-ScSiGeSe <sub>4</sub> | -1.62742 | H-TaCGeSe <sub>4</sub> | -1.31135 | H-TaSiCSe <sub>4</sub> | -1.27265 |
| H-ScSiGeTe <sub>4</sub> | -1.28841 | H-TaCGeTe <sub>4</sub> | -1.01779 | H-TaSiCTe <sub>4</sub> | -0.94233 |
| H-TaSiGeAs <sub>4</sub> | -1.78539 | H-TiCGeAs <sub>4</sub> | -1.63682 | H-TiSiCAs <sub>4</sub> | -1.69721 |
| H-TaSiGeN <sub>4</sub>  | -4.51876 | H-TiCGeN <sub>4</sub>  | -3.5046  | H-TiSiCN <sub>4</sub>  | -3.95433 |
| H-TaSiGeP <sub>4</sub>  | -1.62439 | H-TiCGeP <sub>4</sub>  | -1.6395  | H-TiSiCP <sub>4</sub>  | -1.7968  |
| H-TaSiGeS <sub>4</sub>  | -2.51037 | H-TiCGeS <sub>4</sub>  | -1.92019 | H-TiSiCS <sub>4</sub>  | -1.88852 |
| H-TaSiGeSe <sub>4</sub> | -1.79234 | H-TiCGeSe <sub>4</sub> | -1.23887 | H-TiSiCSe <sub>4</sub> | -1.17979 |
| H-TaSiGeTe <sub>4</sub> | -1.40845 | H-TiCGeTe <sub>4</sub> | -0.92773 | H-TiSiCTe <sub>4</sub> | -0.85283 |
| H-TiSiGeAs <sub>4</sub> | -1.65926 | H-VCGeAs <sub>4</sub>  | -1.81125 | H-VSiCAs <sub>4</sub>  | -1.88248 |
| H-TiSiGeN <sub>4</sub>  | -4.30737 | H-VCGeN <sub>4</sub>   | -3.68159 | H-VSiCN <sub>4</sub>   | -4.17761 |
| H-TiSiGeP <sub>4</sub>  | -1.50932 | H-VCGeP <sub>4</sub>   | -1.85986 | H-VSiCP <sub>4</sub>   | -2.03935 |
| H-TiSiGeS <sub>4</sub>  | -2.27897 | H-VCGeS <sub>4</sub>   | -2.01622 | H-VSiCS <sub>4</sub>   | -1.99869 |
| H-TiSiGeSe <sub>4</sub> | -1.6376  | H-VCGeSe <sub>4</sub>  | -1.31813 | H-VSiCSe <sub>4</sub>  | -1.26749 |
| H-TiSiGeTe <sub>4</sub> | -1.21804 | H-VCGeTe <sub>4</sub>  | -1.02639 | H-VSiCTe <sub>4</sub>  | -0.95792 |
| H-VSiGeAs <sub>4</sub>  | -1.82414 | H-WCGeAs <sub>4</sub>  | -1.88417 | H-WSiCAs <sub>4</sub>  | -1.94967 |
| H-VSiGeN <sub>4</sub>   | -4.42516 | H-WCGeN <sub>4</sub>   | -3.78308 | H-WSiCN <sub>4</sub>   | -4.26092 |
| H-VSiGeP <sub>4</sub>   | -1.73073 | H-WCGeP <sub>4</sub>   | -2.03259 | H-WSiCP <sub>4</sub>   | -2.15376 |
| H-VSiGeS <sub>4</sub>   | -2.40363 | H-WCGeS <sub>4</sub>   | -2.05362 | H-WSiCS <sub>4</sub>   | -2.063   |
| H-VSiGeSe <sub>4</sub>  | -1.71578 | H-WCGeSe <sub>4</sub>  | -1.36187 | H-WSiCSe <sub>4</sub>  | -1.33768 |
| H-VSiGeTe <sub>4</sub>  | -3.171   | H-WCGeTe <sub>4</sub>  | -1.01684 | H-WSiCTe <sub>4</sub>  | -0.96323 |
| H-WSiGeAs <sub>4</sub>  | -1.84705 | H-NbCGeAs <sub>4</sub> | -1.50099 | H-NbSiCAs <sub>4</sub> | -1.60596 |
| H-WSiGeN <sub>4</sub>   | -4.58006 | H-NbCGeN4              | -3.34495 | H-NbSiCN <sub>4</sub>  | -3.77865 |
| H-WSiGeP <sub>4</sub>   | -2.31957 | H-NbCGeP <sub>4</sub>  | -1.6288  | H-NbSiCP <sub>4</sub>  | -1.74694 |
| H-WSiGeS <sub>4</sub>   | -2.3799  | H-NbCGeS <sub>4</sub>  | -1.80353 | H-NbSiCS <sub>4</sub>  | -1.77366 |

| H-WSiGeSe <sub>4</sub>  | -1.81506 | H-NbCGeSe <sub>4</sub> | -1.10172 | H-NbSiCSe <sub>4</sub> | -1.04456 |
|-------------------------|----------|------------------------|----------|------------------------|----------|
| H-WSiGeTe <sub>4</sub>  | -1.41998 | H-NbCGeTe <sub>4</sub> | -0.78532 | H-NbSiCTe <sub>4</sub> | -0.71373 |
| H-ZrSiGeAs <sub>4</sub> | -1.65061 | H-ZrCGeAs <sub>4</sub> | -1.64529 | H-ZrSiCAs <sub>4</sub> | -1.72663 |
| H-ZrSiGeN <sub>4</sub>  | -4.32969 | H-ZrCGeN <sub>4</sub>  | -3.44086 | H-ZrSiCN <sub>4</sub>  | -3.80896 |
| H-ZrSiGeP <sub>4</sub>  | -2.10452 | H-ZrCGeP <sub>4</sub>  | -1.59924 | H-ZrSiCP <sub>4</sub>  | -1.80263 |
| H-ZrSiGeS <sub>4</sub>  | -2.41149 | H-ZrCGeS <sub>4</sub>  | -1.99426 | H-ZrSiCS <sub>4</sub>  | -1.94607 |
| H-ZrSiGeSe <sub>4</sub> | -1.76241 | H-ZrCGeSe <sub>4</sub> | -1.32332 | H-ZrSiCSe <sub>4</sub> | -1.25506 |
| H-ZrSiGeTe <sub>4</sub> | -1.40952 | H-ZrCGeTe <sub>4</sub> | -1.03285 | H-ZrSiCTe <sub>4</sub> | -0.95487 |
|                         |          |                        |          |                        |          |

Table S4 Formation energy of asymmetric  $T-MA_2Z_4$  Janus structures

| Structure               | $E_f(eV)$ | Structure              | $E_f(eV)$ | Structure              | $E_f(eV)$ |
|-------------------------|-----------|------------------------|-----------|------------------------|-----------|
| T-CrSiGeAs <sub>4</sub> | -1.59324  | T-CrCGeAs <sub>4</sub> | -1.56369  | T-CrSiCAs <sub>4</sub> | -1.62663  |
| T-CrSiGeN <sub>4</sub>  | -4.07856  | T-CrCGeN <sub>4</sub>  | -3.41207  | T-CrSiCN <sub>4</sub>  | -3.83853  |
| T-CrSiGeP <sub>4</sub>  | -1.88767  | T-CrCGeP <sub>4</sub>  | -1.65354  | T-CrSiCP <sub>4</sub>  | -1.79108  |
| T-CrSiGeS <sub>4</sub>  | -2.08851  | T-CrCGeS <sub>4</sub>  | -1.89621  | T-CrSiCS <sub>4</sub>  | -1.83343  |
| T-CrSiGeSe <sub>4</sub> | -1.45314  | T-CrCGeSe <sub>4</sub> | -1.14886  | T-CrSiCSe <sub>4</sub> | -0.97089  |
| T-CrSiGeTe <sub>4</sub> | -0.89211  | T-CrCGeTe <sub>4</sub> | -0.76139  | T-CrSiCTe <sub>4</sub> | -0.74577  |
| T-HfSiGeAs <sub>4</sub> | -1.812    | T-HfCGeAs <sub>4</sub> | -1.83824  | T-HfSiCAs <sub>4</sub> | -1.89724  |
| T-HfSiGeN <sub>4</sub>  | -4.61513  | T-HfCGeN <sub>4</sub>  | -3.6932   | T-HfSiCN <sub>4</sub>  | -4.06455  |
| T-HfSiGeP <sub>4</sub>  | -1.58474  | T-HfCGeP <sub>4</sub>  | -1.87852  | T-HfSiCP <sub>4</sub>  | -1.98977  |
| T-HfSiGeS <sub>4</sub>  | -2.63783  | T-HfCGeS <sub>4</sub>  | -2.26249  | T-HfSiCS <sub>4</sub>  | -2.20809  |
| T-HfSiGeSe <sub>4</sub> | -1.91767  | T-HfCGeSe <sub>4</sub> | -1.4733   | T-HfSiCSe <sub>4</sub> | -1.43856  |
| T-HfSiGeTe <sub>4</sub> | -1.25119  | T-HfCGeTe <sub>4</sub> | -0.98712  | T-HfSiCTe <sub>4</sub> | -0.9848   |
| T-MoSiGeAs <sub>4</sub> | -1.83865  | T-MoCGeAs <sub>4</sub> | -1.58361  | T-MoSiCAs <sub>4</sub> | -1.64624  |
| T-MoSiGeN <sub>4</sub>  | -4.08388  | T-MoCGeN <sub>4</sub>  | -3.30393  | T-MoSiCN <sub>4</sub>  | -3.77869  |
| T-MoSiGeP <sub>4</sub>  | -1.94876  | T-MoCGeP <sub>4</sub>  | -1.62043  | T-MoSiCP <sub>4</sub>  | -1.80545  |
| T-MoSiGeS <sub>4</sub>  | -2.13487  | T-MoCGeS <sub>4</sub>  | -1.76009  | T-MoSiCS <sub>4</sub>  | -1.76098  |
| T-MoSiGeSe <sub>4</sub> | -1.46604  | T-MoCGeSe <sub>4</sub> | -0.98835  | T-MoSiCSe <sub>4</sub> | -0.96936  |
| T-MoSiGeTe <sub>4</sub> | -0.89296  | T-MoCGeTe <sub>4</sub> | -0.69851  | T-MoSiCTe <sub>4</sub> | -0.69578  |
| T-NbSiGeAs <sub>4</sub> | -1.57146  | T-ScCGeAs <sub>4</sub> | -1.47432  | T-ScSiCAs <sub>4</sub> | -1.57574  |
| T-NbSiGeN <sub>4</sub>  | -4.16629  | T-ScCGeN <sub>4</sub>  | -3.35448  | T-ScSiCN <sub>4</sub>  | -3.72055  |
| T-NbSiGeP <sub>4</sub>  | -1.91651  | T-ScCGeP <sub>4</sub>  | -1.41799  | T-ScSiCP <sub>4</sub>  | -1.61195  |
| T-NbSiGeS <sub>4</sub>  | -2.20838  | T-ScCGeS <sub>4</sub>  | -2.00956  | T-ScSiCS <sub>4</sub>  | -1.93393  |
| T-NbSiGeSe <sub>4</sub> | -1.50284  | T-ScCGeSe <sub>4</sub> | -1.22012  | T-ScSiCSe <sub>4</sub> | -1.10121  |
| T-NbSiGeTe <sub>4</sub> | -0.93978  | T-ScCGeTe <sub>4</sub> | -0.72507  | T-ScSiCTe <sub>4</sub> | -0.66915  |
| T-ScSiGeAs <sub>4</sub> | -1.48293  | T-TaCGeAs <sub>4</sub> | -1.78487  | T-TaSiCAs <sub>4</sub> | -1.84647  |
| T-ScSiGeN <sub>4</sub>  | -4.01767  | T-TaCGeN <sub>4</sub>  | -3.6311   | T-TaSiCN <sub>4</sub>  | -4.06422  |
| T-ScSiGeP <sub>4</sub>  | -1.89887  | T-TaCGeP <sub>4</sub>  | -1.88281  | T-TaSiCP <sub>4</sub>  | -1.99984  |
| T-ScSiGeS <sub>4</sub>  | -2.27891  | T-TaCGeS <sub>4</sub>  | -2.094    | T-TaSiCS <sub>4</sub>  | -2.07424  |
| T-ScSiGeSe <sub>4</sub> | -1.63514  | T-TaCGeSe <sub>4</sub> | -1.30283  | T-TaSiCSe <sub>4</sub> | -1.2607   |
| T-ScSiGeTe <sub>4</sub> | -0.95849  | T-TaCGeTe <sub>4</sub> | -0.87775  | T-TaSiCTe <sub>4</sub> | -0.82831  |
| T-TaSiGeAs <sub>4</sub> | -1.8369   | T-TiCGeAs <sub>4</sub> | -1.66481  | T-TiSiCAs <sub>4</sub> | -1.73691  |
| T-TaSiGeN <sub>4</sub>  | -4.49585  | T-TiCGeN <sub>4</sub>  | -3.53526  | T-TiSiCN <sub>4</sub>  | -3.97939  |
| T-TaSiGeP <sub>4</sub>  | -1.69691  | T-TiCGeP <sub>4</sub>  | -1.67474  | T-TiSiCP <sub>4</sub>  | -1.84688  |
| T-TaSiGeS <sub>4</sub>  | -2.49377  | T-TiCGeS <sub>4</sub>  | -2.02092  | T-TiSiCS <sub>4</sub>  | -1.982    |
| T-TaSiGeSe4             | -1.76544  | T-TiCGeSe <sub>4</sub> | -1.2406   | T-TiSiCSe <sub>4</sub> | -1.22313  |

| T-TaSiGeTe <sub>4</sub> | -0.93815 | T-TiCGeTe <sub>4</sub> | -0.81788 | T-TiSiCTe <sub>4</sub> | -0.80941 |  |
|-------------------------|----------|------------------------|----------|------------------------|----------|--|
| T-TiSiGeAs <sub>4</sub> | -1.75798 | T-VCGeAs <sub>4</sub>  | -1.82913 | T-VSiCAs <sub>4</sub>  | -1.87554 |  |
| T-TiSiGeN <sub>4</sub>  | -4.37416 | T-VCGeN <sub>4</sub>   | -3.64982 | T-VSiCN <sub>4</sub>   | -4.14359 |  |
| T-TiSiGeP <sub>4</sub>  | -1.51387 | T-VCGeP <sub>4</sub>   | -1.89329 | T-VSiCP <sub>4</sub>   | -2.02708 |  |
| T-TiSiGeS <sub>4</sub>  | -1.93326 | T-VCGeS <sub>4</sub>   | -2.0634  | T-VSiCS <sub>4</sub>   | -2.05173 |  |
| T-TiSiGeSe <sub>4</sub> | -1.71227 | T-VCGeSe <sub>4</sub>  | -1.26178 | T-VSiCSe <sub>4</sub>  | -1.23422 |  |
| T-TiSiGeTe <sub>4</sub> | -1.10734 | T-VCGeTe <sub>4</sub>  | -0.93025 | T-VSiCTe <sub>4</sub>  | -0.8792  |  |
| T-VSiGeAs <sub>4</sub>  | -1.8489  | T-WCGeAs <sub>4</sub>  | -1.8274  | T-WSiCAs <sub>4</sub>  | -1.88769 |  |
| T-VSiGeN <sub>4</sub>   | -4.42421 | T-WCGeN <sub>4</sub>   | -3.62841 | T-WSiCN <sub>4</sub>   | -4.10095 |  |
| T-VSiGeP <sub>4</sub>   | -1.74859 | T-WCGeP <sub>4</sub>   | -1.95672 | T-WSiCP <sub>4</sub>   | -2.07714 |  |
| T-VSiGeS <sub>4</sub>   | -2.40557 | T-WCGeS <sub>4</sub>   | -2.01637 | T-WSiCS <sub>4</sub>   | -0.16581 |  |
| T-VSiGeSe <sub>4</sub>  | -1.74368 | T-WCGeSe <sub>4</sub>  | -1.2414  | T-WSiCSe <sub>4</sub>  | -1.22912 |  |
| T-VSiGeTe <sub>4</sub>  | -1.21655 | T-WCGeTe <sub>4</sub>  | -0.96134 | T-WSiCTe <sub>4</sub>  | -0.80058 |  |
| T-WSiGeAs <sub>4</sub>  | -1.86184 | T-NbCGeAs <sub>4</sub> | -1.53052 | T-NbSiCAs <sub>4</sub> | -1.59116 |  |
| T-WSiGeN <sub>4</sub>   | -4.4146  | T-NbCGeN4              | -3.31368 | T-NbSiCN <sub>4</sub>  | -3.74878 |  |
| T-WSiGeP <sub>4</sub>   | -2.22493 | T-NbCGeP <sub>4</sub>  | -1.60749 | T-NbSiCP <sub>4</sub>  | -1.72652 |  |
| T-WSiGeS <sub>4</sub>   | -2.4189  | T-NbCGeS <sub>4</sub>  | -1.84878 | T-NbSiCS <sub>4</sub>  | -1.80371 |  |
| T-WSiGeSe <sub>4</sub>  | -1.64655 | T-NbCGeSe <sub>4</sub> | -1.0368  | T-NbSiCSe <sub>4</sub> | -1.00669 |  |
| T-WSiGeTe <sub>4</sub>  | -0.95374 | T-NbCGeTe <sub>4</sub> | -0.64273 | T-NbSiCTe <sub>4</sub> | -0.59199 |  |
| T-ZrSiGeAs <sub>4</sub> | -1.83279 | T-ZrCGeAs <sub>4</sub> | -1.70415 | T-ZrSiCAs <sub>4</sub> | -1.76797 |  |
| T-ZrSiGeN <sub>4</sub>  | -4.37667 | T-ZrCGeN <sub>4</sub>  | -3.45851 | T-ZrSiCN <sub>4</sub>  | -3.82305 |  |
| T-ZrSiGeP <sub>4</sub>  | -2.11956 | T-ZrCGeP <sub>4</sub>  | -1.73073 | T-ZrSiCP <sub>4</sub>  | -1.84415 |  |
| T-ZrSiGeS <sub>4</sub>  | -2.45802 | T-ZrCGeS <sub>4</sub>  | -2.07956 | T-ZrSiCS <sub>4</sub>  | -2.04684 |  |
| T-ZrSiGeSe <sub>4</sub> | -2.09302 | T-ZrCGeSe <sub>4</sub> | -1.32428 | T-ZrSiCSe <sub>4</sub> | -1.27479 |  |
| T-ZrSiGeTe <sub>4</sub> | -1.09395 | T-ZrCGeTe <sub>4</sub> | -0.84266 | T-ZrSiCTe <sub>4</sub> | -0.79327 |  |

Table S5 The elastic constants of MA<sub>2</sub>Z<sub>4</sub> structures (in Nm<sup>-1</sup>)

|          |                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                | (                                                                                                                                                                                                                                                                                                                                                                                           | - )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $C_{II}$ | $C_{12}$                                                                                                                                                                                                                                      | $C_{22}$                                                                                                                                                                                                                                                       | $C_{44}$                                                                                                                                                                                                                                                                                                                                                                                    | $C_{11}C_{22}$ - $C_{12}^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 517.55   | 156.89                                                                                                                                                                                                                                        | 156.89                                                                                                                                                                                                                                                         | 180.33                                                                                                                                                                                                                                                                                                                                                                                      | 56583.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 466.43   | 153.54                                                                                                                                                                                                                                        | 153.54                                                                                                                                                                                                                                                         | 156.44                                                                                                                                                                                                                                                                                                                                                                                      | 48041.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 548.07   | 158.42                                                                                                                                                                                                                                        | 158.42                                                                                                                                                                                                                                                         | 194.82                                                                                                                                                                                                                                                                                                                                                                                      | 61728.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 219.20   | 56.79                                                                                                                                                                                                                                         | 56.79                                                                                                                                                                                                                                                          | 81.21                                                                                                                                                                                                                                                                                                                                                                                       | 9222.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 523.57   | 163.91                                                                                                                                                                                                                                        | 163.91                                                                                                                                                                                                                                                         | 179.83                                                                                                                                                                                                                                                                                                                                                                                      | 58952.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 495.98   | 156.72                                                                                                                                                                                                                                        | 156.72                                                                                                                                                                                                                                                         | 169.63                                                                                                                                                                                                                                                                                                                                                                                      | 53169.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 189.62   | 46.40                                                                                                                                                                                                                                         | 46.40                                                                                                                                                                                                                                                          | 71.61                                                                                                                                                                                                                                                                                                                                                                                       | 6645.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 568.24   | 158.30                                                                                                                                                                                                                                        | 158.30                                                                                                                                                                                                                                                         | 204.97                                                                                                                                                                                                                                                                                                                                                                                      | 64893.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 223.95   | 54.53                                                                                                                                                                                                                                         | 54.53                                                                                                                                                                                                                                                          | 84.71                                                                                                                                                                                                                                                                                                                                                                                       | 9238.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 442.01   | 144.25                                                                                                                                                                                                                                        | 144.25                                                                                                                                                                                                                                                         | 148.88                                                                                                                                                                                                                                                                                                                                                                                      | 42952.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 405.60   | 142.67                                                                                                                                                                                                                                        | 142.67                                                                                                                                                                                                                                                         | 131.46                                                                                                                                                                                                                                                                                                                                                                                      | 37511.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 443.25   | 145.43                                                                                                                                                                                                                                        | 145.43                                                                                                                                                                                                                                                         | 148.91                                                                                                                                                                                                                                                                                                                                                                                      | 43311.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 460.18   | 144.96                                                                                                                                                                                                                                        | 144.96                                                                                                                                                                                                                                                         | 157.61                                                                                                                                                                                                                                                                                                                                                                                      | 45693.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 382.10   | 133.53                                                                                                                                                                                                                                        | 133.53                                                                                                                                                                                                                                                         | 124.28                                                                                                                                                                                                                                                                                                                                                                                      | 33192.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 464.62   | 123.57                                                                                                                                                                                                                                        | 123.57                                                                                                                                                                                                                                                         | 171.05                                                                                                                                                                                                                                                                                                                                                                                      | 42143.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 395.96   | 131.62                                                                                                                                                                                                                                        | 131.62                                                                                                                                                                                                                                                         | 126.15                                                                                                                                                                                                                                                                                                                                                                                      | 34793.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 168.06   | 47.77                                                                                                                                                                                                                                         | 47.77                                                                                                                                                                                                                                                          | 36.17                                                                                                                                                                                                                                                                                                                                                                                       | 5746.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 481.74   | 143.83                                                                                                                                                                                                                                        | 143.83                                                                                                                                                                                                                                                         | 158.79                                                                                                                                                                                                                                                                                                                                                                                      | 48601.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 442.34   | 117.44                                                                                                                                                                                                                                        | 117.44                                                                                                                                                                                                                                                         | 163.29                                                                                                                                                                                                                                                                                                                                                                                      | 38155.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 413.47   | 124.29                                                                                                                                                                                                                                        | 124.29                                                                                                                                                                                                                                                         | 145.82                                                                                                                                                                                                                                                                                                                                                                                      | 35941.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|          | $\begin{array}{c} C_{II} \\ 517.55 \\ 466.43 \\ 548.07 \\ 219.20 \\ 523.57 \\ 495.98 \\ 189.62 \\ 568.24 \\ 223.95 \\ 442.01 \\ 405.60 \\ 443.25 \\ 460.18 \\ 382.10 \\ 464.62 \\ 395.96 \\ 168.06 \\ 481.74 \\ 442.34 \\ 413.47 \end{array}$ | $C_{11}$ $C_{12}$ 517.55156.89466.43153.54548.07158.42219.2056.79523.57163.91495.98156.72189.6246.40568.24158.30223.9554.53442.01144.25405.60142.67443.25145.43460.18144.96382.10133.53464.62123.57395.96131.62168.0647.77481.74143.83442.34117.44413.47124.29 | $C_{II}$ $C_{I2}$ $C_{22}$ 517.55156.89156.89466.43153.54153.54548.07158.42158.42219.2056.7956.79523.57163.91163.91495.98156.72156.72189.6246.4046.40568.24158.30158.30223.9554.5354.53442.01144.25144.25405.60142.67142.67443.25145.43145.43460.18144.96144.96382.10133.53133.53464.62123.57123.57395.96131.62131.62168.0647.7747.77481.74143.83143.83442.34117.44117.44413.47124.29124.29 | $C_{II}$ $C_{I2}$ $C_{22}$ $C_{44}$ 517.55156.89156.89180.33466.43153.54153.54156.44548.07158.42158.42194.82219.2056.7956.7981.21523.57163.91163.91179.83495.98156.72156.72169.63189.6246.4046.4071.61568.24158.30158.30204.97223.9554.5354.5384.71442.01144.25144.25148.88405.60142.67142.67131.46443.25145.43145.43148.91460.18144.96157.61382.10133.53133.53124.28464.62123.57123.57171.05395.96131.62131.62126.15168.0647.7747.7736.17442.34117.44117.44163.29413.47124.29124.29145.82 |

| T-NbGe <sub>2</sub> N <sub>4</sub> | 397.98 | 126.40 | 126.40 | 133.07  | 34328.11  |
|------------------------------------|--------|--------|--------|---------|-----------|
| T-ScGe <sub>2</sub> N <sub>4</sub> | 334.35 | 123.01 | 123.01 | 102.81  | 25996.62  |
| T-TaGe <sub>2</sub> N <sub>4</sub> | 404.93 | 127.26 | 127.26 | 134.66  | 35336.89  |
| T-ZrGe <sub>2</sub> N <sub>4</sub> | 394.02 | 118.84 | 118.84 | 138.61  | 32702.38  |
| H-HfSiGeN <sub>4</sub>             | 429.53 | 146.72 | 146.72 | 141.41  | 41494.03  |
| H-MoSiGeN <sub>4</sub>             | 489.65 | 148.53 | 148.53 | 170.56  | 50665.94  |
| H-MoSiGeP <sub>4</sub>             | 209.34 | 57.97  | 57.97  | 75.68   | 8775.22   |
| H-NbSiGeP <sub>4</sub>             | 35.84  | 230.92 | 230.92 | -97.54  | -45048.92 |
| H-TaSiGeN <sub>4</sub>             | 480.88 | 154.51 | 154.51 | 163.18  | 50427.10  |
| H-TiSiGeN <sub>4</sub>             | 444.87 | 145.44 | 145.44 | 149.71  | 43549.51  |
| H-WSiGeN <sub>4</sub>              | 512.16 | 150.39 | 150.39 | 180.88  | 54407.10  |
| H-WSiGeP <sub>4</sub>              | 214.60 | 56.18  | 56.18  | 79.21   | 8900.31   |
| H-ZrSiGeN <sub>4</sub>             | 407.09 | 138.69 | 138.69 | 134.20  | 37224.92  |
| H-CrSiCAs <sub>4</sub>             | 192.83 | 61.73  | 61.73  | 65.55   | 8092.93   |
| H-CrSiCN <sub>4</sub>              | 473.42 | 155.51 | 155.51 | 158.96  | 49438.51  |
| H-CrSiCP <sub>4</sub>              | 235.59 | 59.62  | 59.62  | 87.99   | 10490.86  |
| H-MoSiCAs <sub>4</sub>             | 196.71 | 50.58  | 50.58  | 73.06   | 7391.02   |
| H-MoSiCP <sub>4</sub>              | 234.37 | 49.75  | 49.75  | 92.31   | 9185.21   |
| H-NbSiCAs <sub>4</sub>             | 149.93 | 72.07  | 72.07  | 38.93   | 5611.62   |
| H-NbSiCP <sub>4</sub>              | 206.44 | 72.98  | 72.98  | 66.73   | 9740.14   |
| H-TaSiCAs <sub>4</sub>             | 123.55 | 80.20  | 80.20  | 21.68   | 3477.04   |
| H-TaSiCP <sub>4</sub>              | 189.35 | 85.54  | 85.54  | 51.91   | 8880.02   |
| H-TiSiCP <sub>4</sub>              | 89.07  | -1.24  | -1.24  | 45.15   | -111.54   |
| H-VSiCAs <sub>4</sub>              | 140.90 | 63.73  | 63.73  | 38.58   | 4917.91   |
| H-VSiCN <sub>4</sub>               | 432.40 | 166.79 | 166.79 | 132.80  | 44300.91  |
| H-VSiCP <sub>4</sub>               | 184.79 | 66.83  | 66.83  | 58.98   | 7883.03   |
| H-WSiCAs <sub>4</sub>              | 199.42 | 45.30  | 45.30  | 77.06   | 6981.25   |
| H-WSiCP <sub>4</sub>               | 235.01 | 46.33  | 46.33  | 94.34   | 8742.20   |
| H-MoCGeAs <sub>4</sub>             | 170.58 | 55.07  | 55.07  | 57.76   | 6361.23   |
| H-NbCGeP <sub>4</sub>              | 203.62 | 55.33  | 55.33  | 74.14   | 8205.10   |
| H-TaCGeAs <sub>4</sub>             | 156.05 | 49.48  | 49.48  | 53.29   | 5273.52   |
| H-WCGeAs <sub>4</sub>              | 171.23 | 52.11  | 52.11  | 59.56   | 6207.23   |
| T-HfSiGeN <sub>4</sub>             | 428.46 | 117.91 | 117.91 | 154.74  | 36616.82  |
| T-ScSiGeN <sub>4</sub>             | 352.19 | 117.86 | 117.86 | 116.57  | 27618.56  |
| T-ScSiGeP <sub>4</sub>             | 149.64 | 54.51  | 54.51  | 25.18   | 5185.22   |
| T-TaSiGeN <sub>4</sub>             | 437.27 | 126.54 | 126.54 | 154.67  | 39319.86  |
| T-ZrSiGeN <sub>4</sub>             | 408.71 | 112.71 | 112.71 | 147.55  | 33361.87  |
| T-HfSiCAs <sub>4</sub>             | 109.41 | 31.28  | 31.28  | 38.50   | 2443.92   |
| T-HfSiCP <sub>4</sub>              | 104.38 | 34.99  | 34.99  | -185.26 | 2427.81   |
| T-ScSiCP <sub>4</sub>              | 132.56 | 36.63  | 36.63  | 54.54   | 3514.13   |
| T-TiSiCAs <sub>4</sub>             | 71.27  | 88.40  | 88.40  | -14.97  | -1513.51  |
| T-TiSiCP <sub>4</sub>              | 138.81 | 50.56  | 50.56  | -30.98  | 4461.68   |
| T-ZrSiCP <sub>4</sub>              | 111.52 | 67.29  | 67.29  | -580.09 | 2975.96   |

Table S6Effective mass  $(m^*)$ , elastic modulus  $(\mathcal{C}_{2D})$ , variable situation constant Ei and carrier mobility $(\mu_{2D})$  in the xy direction for electrons and holes

| Structure name                     |          | $m_{x}^{*}/m_{0}$ | $m^{*}_{y}/m_{0}$ | $E_{ix}(eV)$ | $E_{iy}(eV)$ | $C_{2Dx}(eV)$ | $C_{2Dy}(eV)$ | $\mu_x(\text{cm}^2/(\text{Vs}))$ | $\mu_y(\text{cm}^2/(\text{Vs}))$ |
|------------------------------------|----------|-------------------|-------------------|--------------|--------------|---------------|---------------|----------------------------------|----------------------------------|
| H-HfSi <sub>2</sub> N <sub>4</sub> | electron | 0.80              | 0.86              | 452.55       | 452.41       | 2.94          | 2.93          | 1.17E+03                         | 1.01E+03                         |
|                                    | hole     | 2.35              | 2.48              | 452.55       | 452.41       | 2.47          | 2.67          | 1.90E+02                         | 1.47E+02                         |
| H-MoSi <sub>2</sub> N <sub>4</sub> | electron | 0.43              | 0.44              | 540.10       | 539.35       | 2.86          | 2.51          | 5.17E+03                         | 6.42E+03                         |
|                                    | hole     | 1.63              | 1.63              | 540.10       | 539.35       | 5.41          | 5.40          | 9.86E+01                         | 9.92E+01                         |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | H-MoSi <sub>2</sub> P <sub>4</sub> | electron | 0.32  | 0.33  | 221.09 | 220.41 | 4.51 | 4.31         | 1.48E+03 | 1.53E+03 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|----------|-------|-------|--------|--------|------|--------------|----------|----------|
| $\begin{aligned} Pr IaSigvi election 0.33 0.33 0.26 0.33 0.26 0.33 0.278 0.278 0.278 0.79 1.386-02 1.357-02 0.2866-02 0.24 0.2786-02 0.2786-02 0.2866-02 0.24 0.2786-02 0.2786-02 0.2866-02 0.2866-02 0.24 0.2786-02 0.479 0.2786-02 0.2866-02 0.29 0.2786-02 0.479 0.2786-02 0.2786-02 0.479 0.2786-02 0.479 0.2786-02 0.479 0.2786-02 0.479 0.2786-02 0.479 0.2786-02 0.479 0.2786-02 0.479 0.2786-02 0.479 0.2786-02 0.479 0.2786-02 0.479 0.2786-02 0.479 0.2786-02 0.479 0.2786-02 0.479 0.2786-02 0.479 0.2786-02 0.479 0.2786-02 0.479 0.2786-02 0.479 0.2786-02 0.479 0.2786-02 0.479 0.2786-02 0.4796-02 0.4796-02 0.4796-02 0.4796-02 0.4796-02 0.4796-02 0.4796-02 0.4796-02 0.4796-02 0.4796-02 0.4796-02 0.4796-02 0.4796-02 0.4796-02 0.4796-02 0.4796-02 0.4796-02 0.4796-02 0.4796-02 0.4796-02 0.4796-02 0.4796-02 0.4796-02 0.4796-02 0.4796-02 0.4796-02 0.4796-02 0.4796-02 0.4796-02 0.4796-02 0.4796-02 0.4796-02 0.4796-02 0.4796-02 0.4796-02 0.4796-02 0.4886-02 0.490-02 0.490-02 0.490-02 0.490-02 0.490-02 0.490-02 0.490-02 0.490-02 0.490-02 0.490-02 0.490-02 0.490-02 0.490-02 0.490-02 0.490-02 0.490-02 0.490-02 0.490-02 0.490-02 0.490-02 0.490-02 0.490-02 0.490-02 0.490-02 0.490-02 0.490-02 0.490-02 0.490-02 0.490-02 0.490-02 0.490-02 0.490-02 0.490-02 0.490-02 0.490-02 0.490-02 0.490-02 0.490-02 0.490-02 0.490-02 0.490-02 0.490-02 0.490-02 0.200-02 0.490-02 0.490-02 0.490-02 0.490-02 0.490-02 0.490-02 0.490-02 0.490-02 0.200-02 0.490-02 0.200-02 0.490-02 0.200-02 0.490-02 0.200-02 0.490-02 0.200-02 0.490-02 0.200-02 0.200-02 0.200-02 0.200-02 0.200-02 0.200-02 0.200-02 0.200-02 0.200-02 0.200-02 0.200-02 0.200-02 0.200-02 0.200-02 0.200-02 0.200-02 0.200-02 0.200-02 0.200-02 0.200-02 0.200-02 0.200-02 0.200-02 0.200-02 0.200-02 0.200-02 0.200-02 0.200-02 0.200-02 0.200-02 0.200-02 0.200-02 0.200-02 0.200-02 0.200-02 0.200-02 0.200-02 0.200-02 0.200-02 0.200-02 0.200-02 0.200-02 0.200-02 0.200-02 0.200-02 0.200-02 0.200-02 0.200-02 0.200-02 0.200-02 0.200-02 0.200-02 0.200-02 0.200-02 0.200-02 0.200-02 0.200-02 0.200-02 0.200-02 0.200-02 0.200-0$                                                                                                                                                                                                                             | UT C'N                             | alastron | 0.34  | 0.38  | 402.28 | 405.82 | 2.10 | 2.43         | 1.29E+03 | 3.73E+03 |
| $ \begin{array}{c} \mbox{h} 1.06 & 1.00 & 3.13 & 492.48 & 492.83 & 0.73 & 3.34 & 1.38.1742 & 7.365-700 \\ \mbox{h} 1.47 & 3.26 & 471.90 & 471.89 & 3.4 & 4.88 & 3.015742 & 3.865-701 \\ \mbox{h} 1.05 & 0.62 & 0.24 & 193.76 & 191.52 & 0.89 & 0.80 & 0.9085-703 & 7.275-64 \\ \mbox{h} 1.09 & 0.94 & 193.76 & 191.52 & 0.89 & 0.80 & 0.9085-703 & 7.275-64 \\ \mbox{h} 1.09 & 0.94 & 193.76 & 191.52 & 0.83 & 4.54 & 4.54 & 1.085+702 & 1.515-702 \\ \mbox{h} 1.05 & 1.52 & 566.23 & 564.82 & 5.74 & 3.55 & 1.085+702 & 1.375-702 \\ \mbox{h} 1.05 & 1.02 & 0.34 & 0.24 & 0.24 & 0.238 & 227.89 & 3.72 & 4.14 & 7.105-703 & 5425-703 \\ \mbox{h} 1.47 & 0.18 & 0.19 & 22.83 & 227.89 & 3.72 & 4.14 & 7.105-702 & 4.885-702 \\ \mbox{h} 1.275 & 1.02 & 0.23 & 1.37 & 431.38 & 430.36 & 3.95 & 3.37 & 3.025+701 & 7.605-701 \\ \mbox{h} 1.62 & 0.24 & 0.24 & 402.89 & 491.44 & 3.15 & 3.012-701 & 7.605-701 \\ \mbox{h} 1.62 & 0.24 & 402.89 & 491.44 & 3.15 & 3.012-701 & 3.505-703 \\ \mbox{h} 1.62 & 0.24 & 402.89 & 491.44 & 3.15 & 3.012-701 & 3.505-703 \\ \mbox{h} 1.62 & 0.12 & 0.24 & 402.89 & 491.44 & 3.15 & 3.012-701 & 7.605-701 \\ \mbox{h} 1.62 & -1.19 & 1.04 & 402.89 & 491.44 & 3.15 & 3.012-701 & 7.605-701 \\ \mbox{h} 1.62 & -1.10 & -1.4 & 470.46 & 3.95 & 4.373 & 3.025-701 & 1.665-703 & 3.505-703 \\ \mbox{h} 1.62 & -1.10 & -1.4 & 470.46 & 3.95 & 3.13 & 3.121-701 & 7.605-701 \\ \mbox{h} 1.10 & 0.11 & 437.59 & 457.19 & 3.26 & 3.25 & 8.61E-703 & 1.275-702 \\ \mbox{h} 1.10 & 0.11 & 437.59 & 457.19 & 3.26 & 3.25 & 8.61E-703 & 1.275-702 \\ \mbox{h} 1.10 & 0.11 & 437.59 & 457.19 & 3.36 & 3.35 & 3.35 & 3.44 & 4210.2 & 5.18E-702 \\ \mbox{h} 1.10 & 0.11 & 437.59 & 457.19 & 3.26 & 4.31.8 & 1.216-704 & 1.15E-704 \\ \mbox{h} 1.10 & 0.11 & 437.89 & 457.19 & 3.84 & 3.22 & 8.76-702 & 1.25E-702 \\ \mbox{h} 1.10 & 0.11 & 437.89 & 457.19 & 3.34 & 3.35 & 3.35 & 3.44 & 4.210 & 5.18E-702 \\ \mbox{h} 1.29 & 0.07 & 416.89 & 415.66 & 2.248 & 2.05 & 6.46E-70 & 4.28E-702 \\ \mbox{h} 1.29 & 0.07 & 415.66 & 2.248 & 2.05 & 6.46E-70 & 4.28E-702 \\ \mbox{h} 1.29 & 0.07 & 4.33 & 457.19 & 2.36 & 2.256 & 4.28E-702 \\ $                                                                                                                                                                                                            | n-1a5121N4                         |          | 0.85  | 0.85  | 492.20 | 495.85 | 6.59 | 8.70<br>5.02 | 1.30E+02 | 1.55ET02 |
| $\begin{aligned} & \text{Pr}_{158} \text{Ps}_{4} & \text{clectron} & 1.44 & 5.26 & 471.90 & 471.89 & 3.47 & 3.05 & 3.78E-701 & 5.66E+02 \\ & \text{H}_{158} \text{Ps}_{4} & \text{clectron} & 0.62 & 0.24 & 193.76 & 191.52 & 0.89 & 0.80 & 9.08E+03 & 7.27E+04 \\ & \text{hole} & 1.09 & 0.94 & 193.76 & 191.52 & 4.63 & 4.54 & 1.08E+02 & 1.51E+02 \\ & \text{H}_{WSig} \text{N}_{4} & \text{clectron} & 0.34 & 0.34 & 565.23 & 564.82 & 3.72 & 3.91 & 4.98E+03 & 4.66E+03 \\ & \text{hole} & 1.53 & 1.52 & 562.3 & 564.82 & 3.72 & 4.14 & 7.10E+03 & 5.42E+03 \\ & \text{hole} & 0.24 & 0.24 & 228.38 & 227.89 & 2.43 & 2.40 & 9.53E+03 & 9.61E+03 \\ & \text{H}_{Z5ig} \text{N}_{4} & \text{clectron} & 0.18 & 0.19 & 228.38 & 227.89 & 2.43 & 2.40 & 9.53E+03 & 9.61E+03 \\ & \text{H}_{Z5ig} \text{N}_{4} & \text{clectron} & 0.52 & 0.24 & 492.89 & 491.44 & 3.51 & 1 & 5.79 & 1.00E+03 & 3.50E+03 \\ & \text{hole} & 0.54 & 0.25 & 0.24 & 492.89 & 491.44 & 3.51 & 1 & 5.79 & 1.00E+03 & 3.50E+03 \\ & \text{hole} & -1.09 & 1.08 & 492.89 & 491.44 & 3.52 & 3.04 & 4.74E+02 & 4.8E+02 \\ & \text{hole} & -1.09 & 1.08 & 492.89 & 491.44 & 3.52 & 3.04 & 4.74E+02 & 3.43E+02 \\ & \text{hole} & -1.10 & -1.4 & 471.67 & 470.46 & 3.51 & 3.23 & 4.48E+02 & 3.30E+02 \\ & \text{H}_{156} \text{P}_{4} & \text{clectron} & 0.72 & 2.2 & 383.63 & 381.39 & 3.09 & -313 & 1.66E+02 & 1.71E+02 \\ & \text{H}_{166} \text{P}_{4} & \text{clectron} & 0.38 & 0.39 & 434.55 & 433.33 & 2.02 & 2.81 & 1.03E+04 & 5.11E+03 \\ & \text{hole} & -1.10 & -1.1 & 434.55 & 433.33 & 3.53 & 3.53 & 3.43 & 4.21E+02 & 3.48E+02 \\ & \text{H}_{166} \text{P}_{4} & \text{clectron} & 0.30 & 0.31 & 457.89 & 457.19 & 3.44 & 3.52 & 8.77E+02 & 9.22E+02 \\ & \text{H}_{166} \text{P}_{4} & \text{electron} & 0.30 & 0.31 & 457.89 & 457.19 & 3.44 & 3.52 & 8.77E+02 & 9.22E+02 \\ & \text{H}_{166} \text{P}_{4} & \text{electron} & 0.31 & 0.51 & 40.79 & 362.43 & 3.35 & 3.50 & -03 \\ & \text{H}_{276} \text{P}_{5} & \text{hole} & 1.7 & 1.52 & 364.79 & 362.43 & 3.35 & 3.50 & 2.04E+02 & 1.48E+02 \\ & -166E+03 & \text{hole} & 1.77 & 1.52 & 364.79 & 362.43 & 2.38 & 3.34 & 3.21E+02 & 2.8E+02 \\ & -164E+03 & \text{hole} & 1.77 & 1.52 & 464.79 & 362.43 & 2.38 & 3.35 & 3.50 & 0.24E+02 & 2.8E+02 \\ & -164E+03 & 1.09E+04 & 1.59E+02 \\ & -164$                           |                                    | noie     | 1.00  | 5.15  | 492.28 | 495.85 | 0.75 | 5.95         | 1.38E+02 | 7.30E+00 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $H-11S1_2N_4$                      | electron | 1.44  | 3.26  | 4/1.90 | 4/1.89 | 3    | 4.08         | 3.61E+02 | 3.80E+01 |
| $ \begin{aligned} & \text{H-1} \text{Exp} I_{A} & \text{electron} & 0.62 & 0.24 & 193.76 & 191.52 & 0.89 & 0.80 & 0.88 + 0.3 & 1.21E+02 \\ & \text{H-WSi}, N_{A} & \text{electron} & 0.34 & 0.34 & 0.56 + 23 & 564 + 82 & 3.72 & 3.91 & 4.54 & 1.08E+02 & 1.3TE+02 \\ & \text{H-WSi}, P_{A} & \text{electron} & 0.18 & 0.19 & 228.38 & 227.89 & 3.72 & 4.14 & 7.10E+03 & 5.42E+03 \\ & \text{H-Z}, N_{B}, P_{A} & \text{electron} & 0.18 & 0.19 & 228.38 & 227.89 & 3.72 & 4.14 & 7.10E+03 & 5.42E+03 \\ & \text{H-Z}, N_{B}, P_{A} & \text{electron} & 0.24 & 0.24 & 228.38 & 227.89 & 3.72 & 4.14 & 7.10E+03 & 5.42E+03 \\ & \text{H-Z}, N_{B}, P_{A} & \text{electron} & 0.52 & 0.24 & 492.88 & 491.44 & 5.1 & 1 & 5.79 & 3.02E+01 & 7.60E+01 \\ & \text{T-HS}, N_{A} & \text{electron} & 0.52 & 0.24 & 492.89 & 491.44 & 5.51 & 1 & 5.79 & 1.00E+03 & 3.50E+03 \\ & \text{hole} & -1.09 & 1.08 & 492.89 & 491.44 & 3.52 & 3.04 & 4.74E+02 & 4.38E+02 \\ & \text{H-HG}, N_{A} & \text{electron} & 0.54 & 0.25 & 471.67 & 470.46 & 3.51 & 3.23 & 4.48E+02 & 3.30E+02 \\ & \text{H-HG}, N_{A} & \text{electron} & 0.72 & 2.2 & 383.63 & 381.39 & 3.09 & 3.13 & 1.66E+03 & 1.71E+02 \\ & \text{H-HG}, N_{A} & \text{electron} & 0.72 & 2.2 & 383.63 & 381.39 & 3.09 & 3.13 & 1.66E+02 & 1.71E+02 \\ & \text{H-MG}, N_{A} & \text{electron} & 0.38 & 0.39 & 434.55 & 433.35 & 3.50 & -33 & 4.32E+02 & 3.18E+02 \\ & \text{H-WG}, N_{A} & \text{electron} & 0.38 & 0.39 & 434.55 & 433.35 & 3.50 & -33 & 4.21E+02 & 4.38E+02 \\ & \text{H-WG}, N_{A} & \text{electron} & 0.30 & 0.31 & 457.89 & 457.19 & 3.44 & 3.52 & 8.77E+02 & 9.22E+02 \\ & \text{H-WG}, N_{A} & \text{electron} & 0.30 & 0.31 & 457.89 & 457.19 & 3.44 & 3.52 & 8.77E+02 & 9.22E+02 \\ & \text{H-WG}, N_{A} & \text{electron} & 0.31 & 0.51 & 40.17 & 364.79 & 362.43 & 2.78 & 8.25 & 6.84E+03 & 1.09E+04 \\ & \text{H-WG}, N_{A} & \text{electron} & 0.31 & 0.51 & 40.127 & 400.01 & 3.84 & 3.22 & 8.77E+02 & 9.22E+02 \\ & \text{H-WG}, N_{A} & \text{electron} & 0.45 & -0.99 & 413.62 & 413.16 & 4.04 & 4.29 & 6.46E+02 & 1.50E+03 \\ & \text{T-FG}, N_{A} & \text{electron} & 0.31 & 0.65 & 40.127 & 400.01 & 3.84 & 3.22 & 8.77E+02 & 9.24E+02 \\ & \text{T-HG}, N_{A} & \text{electron} & 0.31 & 0.65 & 40.127 & 400.01 & 3.84 & 3.22 & 4.78E+02 & 5$                                          | II T'S' D                          | hole     | 3.84  | 1.13  | 4/1.90 | 4/1.89 | 3.47 | 3.05         | 3./8E+01 | 5.66E+02 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $H-11S1_2P_4$                      | electron | 0.62  | 0.24  | 193.76 | 191.52 | 0.89 | 0.80         | 9.08E+03 | /.2/E+04 |
| $\begin{split} \begin{split} \text{H-WS}_{\text{N}} \text{h}_{\text{A}} & \text{clectron} & 0.34 & 0.34 & 0.523 & 564.82 & 5.72 & 3.91 & 4.98E+03 & 4.66E+03 \\ \text{H-WS}_{\text{B}} & \text{electron} & 0.18 & 0.19 & 228.38 & 227.89 & 2.43 & 2.40 & 9.52E+03 & 9.61E+03 \\ \text{H-Zc}_{\text{S}} \text{h}_{\text{A}} & \text{electron} & 2.30 & 1.37 & 431.38 & 430.36 & 2.26 & 2.59 & 2.27E+02 & 4.88E+02 \\ \text{hole} & 0.24 & 0.24 & 228.38 & 227.89 & 2.43 & 2.40 & 9.52E+03 & 9.61E+03 \\ \text{hole} & 1.09 & 1.26 & 492.89 & 491.44 & 5.1 & 5.79 & 1.00E+03 & 3.50E+03 \\ \text{hole} & 1.09 & 1.08 & 492.89 & 491.44 & 3.52 & 3.04 & 4.74E+02 & 6.43E+02 \\ \text{hole} & 1.09 & 1.08 & 492.89 & 491.44 & 3.52 & 3.04 & 4.74E+03 & 4.74E+03 \\ \text{hole} & -1.09 & 1.84 & 402.89 & 491.44 & 3.52 & 3.04 & 4.74E+03 & 4.74E+03 \\ \text{hole} & -1.00 & 1.4 & 471.67 & 470.46 & 3.51 & 3.23 & 4.48E+02 & 3.30E+02 \\ \text{H-HGe}_{\text{N}} & \text{electron} & 0.72 & 2.2 & 383.63 & 381.39 & 3.09 & 3.13 & 1.66E+02 & 1.71E+02 \\ \text{H-MGe}_{2} \text{h} & \text{electron} & 0.38 & 0.39 & 434.55 & 433.35 & 3.20 & 2.26E+03 & 2.78E+02 \\ \text{hole} & 1.10 & 1.1 & 434.55 & 433.35 & 3.20 & 2.28E+10 & 4.38E+02 \\ \text{H-WGe}_{2} \text{h} & \text{electron} & 0.30 & 0.31 & 457.89 & 457.19 & 2.46 & 2.50 & 8.61E+03 & 1.39E+04 \\ \text{hole} & 0.80 & 0.8 & 457.89 & 457.19 & 2.46 & 2.50 & 8.61E+03 & 1.39E+02 \\ \text{hole} & 1.77 & 1.52 & 364.79 & 362.43 & 3.33 & 3.50 & 2.08E+02 & 1.45E+02 \\ \text{hole} & 1.77 & 1.52 & 364.79 & 362.43 & 3.33 & 3.50 & 2.08E+02 & 1.45E+02 \\ \text{hole} & 1.77 & 1.52 & 364.79 & 362.43 & 2.33 & 3.50 & 2.08E+02 & 1.45E+02 \\ \text{hole} & 1.29 & 0.97 & 416.89 & 415.66 & 8.47 & 8.62 & 1.86E+03 & 1.79E+03 \\ \text{hole} & 0.65 & 0.66 & 413.62 & 413.16 & 3.48 & 3.278 & 0.88E+03 & 9.67E+02 \\ \text{hole} & 0.79 & -1.03 & 401.27 & 400.01 & 3.44 & 3.72 & 4.08E+03 & 9.67E+02 \\ \text{hole} & 0.49 & 0.97 & 416.89 & 415.66 & 8.47 & 8.62 & 1.86E+03 & 1.79E+03 \\ \text{hole} & 0.49 & 0.97 & 416.89 & 415.66 & 8.47 & 8.62 & 1.86E+03 & 1.79E+03 \\ \text{hole} & 0.49 & 0.97 & 416.89 & 415.66 & 8.47 & 8.62 & 1.86E+03 & 1.79E+03 \\ \text{hole} & 0.49 & 0.97 & 416.89 & 415.66 & 8.47 & 8.62 & 1.86E+03 & 9.67E+02 \\ \text{hole} & 0.44 & 0.97 & 416$                       |                                    | hole     | 1.09  | 0.94  | 193.76 | 191.52 | 4.63 | 4.54         | 1.08E+02 | 1.51E+02 |
| hole 1.53 1.52 565.23 564.82 5.64 5.04 5.01 1.08E+02 1.37E+02   H-WSip4 hole 0.24 0.22 28.38 227.89 3.72 4.14 7.10E+03 5.42E+03   H-ZrSiy4 hole 3.61 2.26 431.38 430.36 2.26 2.59 2.27E+02 4.88E+02   H-HSiyA hole 1.02 0.24 492.89 491.44 5.1 5.79 1.00E+03 3.50E+03   T-ZrSiyA hole -1.0 1.4 471.67 470.46 3.59 3.77 1.46E+03 4.74E+02 3.05E+02   H-HGe <sub>2</sub> N4 electron 0.53 0.25 471.67 470.46 3.51 3.23 4.48E+02 3.06E+03 1.71E+02   H-MGe <sub>2</sub> N4 electron 0.38 0.39 434.55 433.35 2.00 2.26E+03 2.26E+03 2.27E+02 4.84E+02 1.71E+02   H-MGe <sub>2</sub> N4 electron 0.30 0.31 4.57.89 457.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $H-WS_{12}N_4$                     | electron | 0.34  | 0.34  | 565.23 | 564.82 | 3.72 | 3.91         | 4.98E+03 | 4.66E+03 |
| $\begin{split} \begin{split} &   V \otimes p_{1}^{1} e   electron 0   18 0   19 228.38 227.89 2.43 2.40 9.53E+03 9.61E+03 \\ & hole 0.24 0.24 228.38 227.89 2.43 2.40 9.53E+03 9.61E+03 \\ & hole 3.61 2.26 431.38 430.36 3.95 3.97 3.02E+01 7.60E+01 \\ & T-HE_SN_4 electron 0.52 0.24 492.89 491.44 5.1   5.79 1.00E+03 3.50E+03 \\ & hole -1.09 1.08 492.89 491.44 5.2 3.04 4.74E+02 6.43E+02 \\ & hole -1.09 1.48 492.89 491.44 5.32 3.04 4.74E+02 6.43E+02 \\ & hole -1.10 -1.4 471.67 470.46 3.35 4.77 1.46E+03 4.74E+03 \\ & hole -1.10 -1.4 471.67 470.46 3.35 3.21 4.48E+02 3.30E+02 \\ & hole -1.10 -1.4 471.67 470.46 3.35 3.23 4.48E+02 3.30E+02 \\ & hole -1.10 -1.4 4455 433.5 3.5 3.43 4.21E+02 4.88E+02 \\ & hole -1.10 -1.4 457.89 457.19 2.46 2.50 8.61E+03 1.71E+02 \\ & hole -1.10 -1.4 457.89 457.19 2.46 2.50 8.61E+03 1.00E+04 5.11E+03 \\ & hole -1.10 -1.1 4345 5 433.35 3.5 3.43 4.21E+02 4.38E+02 \\ & hole -1.10 -1.1 4345 5 433.35 3.5 3.43 4.21E+02 4.38E+02 \\ & hole -0.80 0.8 457.89 457.19 2.46 2.50 8.61E+03 1.09E+04 \\ & hole -1.77 1.52 364.79 362.43 3.35 3.50 2.00 8.61E+03 1.09E+04 \\ & hole -1.77 1.52 364.79 362.43 3.35 3.50 2.04E+02 1.45E+02 \\ & hole -1.29 0.97 416.89 415.66 8.47 8.62 1.86E+03 1.79E+03 \\ & hole -1.29 0.97 416.89 415.66 8.47 8.62 1.86E+03 1.79E+03 \\ & hole -0.97 -1.03 401.27 400.01 3.44 3.72 4.08E+03 9.67E+02 \\ & hole 0.65 0.66 413.62 413.16 3.98 3.56 1.80E+03 9.67E+02 \\ & hole 0.65 0.66 413.62 413.16 3.98 3.56 1.80E+03 9.87E+02 \\ & hole 0.99 41.62 413.16 3.98 3.56 1.80E+03 9.87E+02 \\ & hole 0.99 41.62 413.16 3.98 3.56 1.80E+03 9.87E+02 \\ & hole 0.97 -1.03 401.27 400.01 3.44 3.72 4.08E+03 9.67E+02 \\ & hole 0.97 -1.03 401.27 400.01 3.44 4.72 4.94 4.64E+03 9.87E+02 \\ & hole 0.97 -1.03 401.27 400.01 3.44 3.72 4.08E+03 9.87E+02 \\ & hole 0.93 0.33 209.52 209.20 4.04 4.06 1.73E+03 1.62E+03 \\ & hole 0.94 0.93 40.952 209.20 4.04 4.06 1.73E+03 3.25E+02 \\ & hole 0.94 0.95 2.209.20 4.31 2.56 4.49E+03 9.87E+02 \\ & hole 0.95 0.66 4.21.69 0.23 0.32 2.952 0.20 4.31 2.55 8.44E+03 3.25E+03 \\ & hole 0.95 0.68 41.75 41.451 414.32 3.08 3.96 6.66E+01 1.50E+04 \\ & hole 0.9$                                                                                                                                                                             |                                    | hole     | 1.53  | 1.52  | 565.23 | 564.82 | 5.64 | 5.05         | 1.08E+02 | 1.37E+02 |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | H-WSi <sub>2</sub> P <sub>4</sub>  | electron | 0.18  | 0.19  | 228.38 | 227.89 | 3.72 | 4.14         | 7.10E+03 | 5.42E+03 |
| $\begin{split} & \text{H-Zr5}_{\text{S}N_4} & \text{electron} & 2.30 & 1.37 & 431.38 & 430.36 & 2.26 & 2.39 & 2.27E+02 & 4.88E+02 \\ & \text{hole} & 3.61 & 2.26 & 431.38 & 430.36 & 3.95 & 3.97 & 3.02E+01 & 7.60E+01 \\ & \text{hole} & -1.09 & 1.08 & 492.89 & 491.44 & 5.1 & 1 & 5.79 & 1.00E+03 & 3.50E+03 \\ & \text{hole} & -1.09 & 1.08 & 492.89 & 491.44 & 5.1 & 1 & 5.79 & 1.00E+03 & 4.74E+02 & 4.74E+02 & 4.74E+02 & 4.74E+02 & 4.74E+02 & 4.74E+02 & 3.30E+01 \\ & \text{hole} & -1.00 & -1.4 & 471.67 & 470.46 & 3.95 & 4.77 & 1.46E+03 & 4.74E+02 & 3.30E+02 \\ & \text{hole} & -1.10 & -1.4 & 471.67 & 470.46 & 3.91 & 3.23 & 4.48E+02 & 2.78E+02 \\ & \text{hole} & 1.86 & 1.8 & 383.63 & 381.39 & 2.17 & 2.00 & 2.26E+03 & 2.78E+02 & 4.88E+02 \\ & \text{hole} & 1.10 & 1.1 & 434.55 & 433.35 & 3.20 & 2.81 & 1.03E+04 & 5.11E+03 \\ & \text{hole} & 0.30 & 0.31 & 457.89 & 457.19 & 3.4 & 3.32 & 8.77E+02 & 9.22E+02 & 4.26E+03 & 4.278E+02 & 4.88E+02 & 4.26E+02 & 4.88E+02 & 4.36E+02 & 1.09E+04 & 4.26E+02 & 4.18E+02 & 4.88E+02 & 4.26E+02 & 4.8E+02 & 1.80E+03 & 1.79E+03 & 4.26E+03 & 4.79E+02 & 9.22E+02 & 4.26E+03 & 4.79E+02 & 9.26E+03 & 4.79E+02 & 4.86E+03 & 1.79E+03 & 4.56 & 8.47 & 8.62 & 1.86E+03 & 1.79E+03 & 4.56 & 4.47 & 8.62 & 1.86E+03 & 1.79E+03 & 4.56 & 4.47 & 8.62 & 1.86E+03 & 1.79E+03 & 4.56 & 4.51 & 4.14.32 & 3.08 & 2.08 & 6.44E+02 & 1.80E+03 & 8.92E+02 & 4.86E+03 & 4.79E+02 & 4.86E+03 & 4.78E+03 & 9.67E+02 & 4.86E+03 & 4.79E+02 & 4.86E+03 & 4.78E+03 & 9.67E+02 & 4.86E+03 & 4.79E+03 & 3.56 & 4.20E+03 & 4.20E+03 & 8.92E+02 & 4.86E+03 & 8.92E+02 & 4.86E+03 & 8.92E+02 & 4.86E+03 & 4.78E+03 & 9.67E+02 & 4.86E+03 & 4.78E+03 & 9.67E+02 & 4.86E+03 & 4.78E+03 & 4.$                                                                                                                                                                           |                                    | hole     | 0.24  | 0.24  | 228.38 | 227.89 | 2.43 | 2.40         | 9.53E+03 | 9.61E+03 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | H-ZrSi <sub>2</sub> N <sub>4</sub> | electron | 2.30  | 1.37  | 431.38 | 430.36 | 2.26 | 2.59         | 2.27E+02 | 4.88E+02 |
| $\begin{array}{c} \begin{tabular}{lllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                    | hole     | 3.61  | 2.26  | 431.38 | 430.36 | 3.95 | 3.97         | 3.02E+01 | 7.60E+01 |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | T-HfSi <sub>2</sub> N <sub>4</sub> | electron | 0.52  | 0.24  | 492.89 | 491.44 | 5.1  | 5.79         | 1.00E+03 | 3.50E+03 |
| $\begin{array}{c} {}^{7} {\rm L256} {\rm N}, & {\rm electron} & 0.54 & 0.25 & 471.67 & 470.46 & 3.95 & 4.77 & 1.46E+03 & 4.74E+03 \\ {\rm hole} & -1.10 & -1.4 & 471.67 & 470.46 & 3.51 & 3.23 & 4.48E+02 & 3.30E+02 \\ {\rm hole} & 1.86 & 1.8 & 383.63 & 381.39 & 2.17 & 2.00 & 2.26E+03 & 2.78E+02 \\ {\rm hole} & 1.86 & 1.8 & 383.63 & 381.39 & 3.09 & 3.13 & 1.66E+02 & 1.71E+02 \\ {\rm H-MoGe}_{\rm N}_{\rm h} & {\rm electron} & 0.38 & 0.39 & 434.55 & 433.35 & 3.20 & 2.81 & 1.03E+04 & 5.11E+03 \\ {\rm hole} & 1.10 & 1.1 & 434.55 & 433.35 & 3.5 & 3.43 & 4.21E+02 & 4.38E+02 \\ {\rm hole} & 0.80 & 0.8 & 457.89 & 457.19 & 3.4 & 3.32 & 8.77E+02 & 9.22E+02 \\ {\rm H-ZGe}_{\rm N}_{\rm h} & {\rm electron} & 0.21 & 0.21 & 416.89 & 415.66 & 8.47 & 8.62 & 1.86E+03 & 1.09E+04 \\ {\rm hole} & 1.77 & 1.52 & 364.79 & 362.43 & 2.78 & 2.81 & 2.15E+02 & 2.81E+02 \\ {\rm hole} & 1.77 & 1.52 & 364.79 & 362.43 & 2.78 & 2.81 & 2.15E+02 & 2.81E+02 \\ {\rm hole} & 1.29 & 0.97 & 416.89 & 415.66 & 8.47 & 8.62 & 1.86E+03 & 1.79E+03 \\ {\rm hole} & 1.29 & 0.97 & 416.89 & 415.66 & 2.28 & 2.05 & 6.84E+02 & 1.50E+03 \\ {\rm r}_{\rm CGe_{\rm N}_{\rm N}} & {\rm electron} & 0.45 & -0.99 & 413.62 & 413.16 & 3.98 & 3.56 & 1.80E+03 & 4.79E+02 \\ {\rm hole} & 0.97 & 400.01 & 3.84 & 3.72 & 408E+03 & 9.67E+02 \\ {\rm hole} & 0.97 & -1.03 & 401.27 & 400.01 & 3.84 & 3.72 & 408E+03 & 9.87E+02 \\ {\rm hole} & -0.97 & -1.03 & 401.27 & 400.01 & 3.84 & 3.72 & 408E+03 & 8.98E+02 \\ {\rm H-HSiGeN_{\rm A}} & {\rm electron} & 0.78 & 0.86 & 414.51 & 414.32 & 3.08 & 2.98 & 104E+03 & 8.98E+02 \\ {\rm hole} & -0.97 & -1.03 & 401.27 & 400.01 & 3.84 & 4.54 & 2.94E+02 & 2.58E+02 \\ {\rm H-HSiGeN_{\rm A}} & {\rm electron} & 0.78 & 0.86 & 414.51 & 414.32 & 3.23 & 3.49 & 6.66E+01 & 5.50E+01 \\ {\rm H-MSiGeP_{\rm A}} & {\rm hole} & 0.33 & 0.33 & 209.52 & 209.20 & 2.31 & 2.56 & 4.99E+03 & 3.25E+03 \\ {\rm hole} & -6.20 & -6.2 & 484.97 & 484.22 & 1.94 & 1.63 & 1.16E+04 & 1.56E+04 \\ {\rm hole} & 0.34 & 0.37 & 209.52 & 209.20 & 2.31 & 2.56 & 4.99E+03 & 3.25E+02 \\ {\rm hole} & 1.52 & 1.27 & 468.55 & 476.69 & 4.27 & 3.79 & 1.58E+02 & 2.93E+02 \\ {\rm H-TSiGeN_{\rm A}} & {\rm electron} & 0.33 & 0.33 & 2$                                                                                                                |                                    | hole     | -1.09 | 1.08  | 492.89 | 491.44 | 3.52 | 3.04         | 4.74E+02 | 6.43E+02 |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | T-ZrSi <sub>2</sub> N <sub>4</sub> | electron | 0.54  | 0.25  | 471.67 | 470.46 | 3.95 | 4.77         | 1.46E+03 | 4.74E+03 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                    | hole     | -1.10 | -1.4  | 471.67 | 470.46 | 3.51 | 3.23         | 4.48E+02 | 3.30E+02 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | H-HfGe <sub>2</sub> N <sub>4</sub> | electron | 0.72  | 2.2   | 383.63 | 381.39 | 2.17 | 2.00         | 2.26E+03 | 2.78E+02 |
| $ \begin{array}{l} \mathrm{H} \mathrm{MGe_{S}N_{4}} & \mathrm{electron} & 0.38 & 0.39 & 434.55 & 433.35 & 2.02 & 2.81 & 1.03E+04 & 5.11E+03 \\ \mathrm{hole} & 1.00 & 1.1 & 434.55 & 433.35 & 3.5 & 3.43 & 4.21E+02 & 4.38E+02 \\ \mathrm{hole} & 0.80 & 0.8 & 457.89 & 457.19 & 2.86 & 2.50 & 8.61E+03 & 1.09E+04 \\ \mathrm{hole} & 0.80 & 0.8 & 457.89 & 457.19 & 2.86 & 2.50 & 8.61E+03 & 1.09E+04 \\ \mathrm{hole} & 1.77 & 1.52 & 364.79 & 362.43 & 2.38 & 5.50 & 2.04E+02 & 2.81E+02 \\ \mathrm{c} \mathrm{electron} & 0.21 & 0.21 & 416.89 & 415.66 & 8.47 & 8.62 & 1.86E+03 & 1.79E+03 \\ \mathrm{hole} & 1.29 & 0.97 & 416.89 & 415.66 & 2.28 & 2.05 & 6.84E+02 & 1.50E+03 \\ \mathrm{T} -\mathrm{F}\mathrm{Ge_{S}N_{4}} & \mathrm{electron} & 0.45 & -0.99 & 413.62 & 413.16 & 3.98 & 3.56 & 1.80E+03 & 4.79E+02 \\ \mathrm{hole} & 0.65 & 0.66 & 413.62 & 413.16 & 4.64 & 4.29 & 6.46E+02 & 7.42E+02 \\ \mathrm{T} -\mathrm{ZrGe_{S}N_{4}} & \mathrm{electron} & 0.31 & 0.65 & 401.27 & 400.01 & 3.84 & 3.72 & 4.08E+03 & 9.67E+02 \\ \mathrm{hole} & -0.97 & -1.03 & 401.27 & 400.01 & 3.84 & 3.72 & 4.08E+03 & 9.67E+02 \\ \mathrm{hole} & 2.91 & 2.97 & 414.51 & 414.32 & 3.08 & 2.98 & 1.04E+03 & 8.93E+02 \\ \mathrm{hole} & -6.20 & -6.2 & 484.97 & 484.22 & 1.94 & 1.63 & 1.10E+04 & 1.56E+04 \\ \mathrm{hole} & -6.20 & -6.2 & 484.97 & 484.22 & 1.94 & 1.63 & 1.10E+04 & 1.56E+04 \\ \mathrm{hole} & 0.34 & 0.37 & 209.52 & 209.20 & 4.04 & 4.06 & 1.73E+03 & 1.62E+03 \\ \mathrm{hole} & 0.34 & 0.37 & 209.52 & 209.20 & 2.31 & 2.56 & 4.99E+03 & 3.25E+03 \\ \mathrm{hole} & 0.34 & 0.37 & 209.52 & 209.20 & 2.31 & 2.56 & 4.99E+03 & 3.25E+03 \\ \mathrm{hole} & 0.34 & 0.37 & 209.52 & 209.20 & 2.31 & 2.56 & 4.99E+03 & 3.25E+03 \\ \mathrm{hole} & 0.34 & 0.37 & 209.52 & 209.20 & 2.31 & 2.56 & 4.99E+03 & 3.25E+03 \\ \mathrm{hole} & 0.34 & 0.37 & 209.52 & 209.20 & 2.31 & 2.56 & 4.99E+03 & 3.25E+03 \\ \mathrm{hole} & 0.52 & 1.27 & 488.55 & 476.69 & 3.27 & 2.51 & 2.52E+02 & 3.30E+02 \\ \mathrm{hole} & 0.52 & 1.27 & 488.55 & 476.69 & 3.27 & 2.51 & 2.52E+02 & 3.30E+03 & 6.69E+03 \\ \mathrm{hole} & 0.50 & 0.68 & 511.54 & 509.90 & 4.81 & 4.70 & 1.15E+00 & 1.16E+00 \\ \mathrm{hole} & 0.50 & 0.68 & 215.76 & 2.37 & 2.78 & 9.30E+03 & 6.69E+03 \\ \mathrm{hole} & 0.50 & 0.68 & 215.76 & 2.37 & 2.78 & 9.30E+03 & 6.69E+03 $ |                                    | hole     | 1.86  | 1.8   | 383.63 | 381.39 | 3.09 | 3.13         | 1.66E+02 | 1.71E+02 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | H-MoGe <sub>2</sub> N <sub>4</sub> | electron | 0.38  | 0.39  | 434.55 | 433.35 | 2.02 | 2.81         | 1.03E+04 | 5.11E+03 |
| $ \begin{array}{l} H-WGe_{S}N_{4} & \mbox{lectron} & 0.30 & 0.31 & 457.89 & 457.19 & 2.86 & 2.50 & 8.61E+03 & 1.09E+04 \\ hole & 0.80 & 0.8 & 457.89 & 457.19 & 3.4 & 3.32 & 8.77E+02 & 9.22E+02 \\ H-ZrGe_{2}N_{4} & \mbox{lectron} & 1.50 & 1.7 & 364.79 & 362.43 & 3.35 & 3.50 & 2.04E+02 & 1.45E+02 \\ H-BC_{2}N_{4} & \mbox{lectron} & 0.21 & 0.21 & 416.89 & 415.66 & 8.47 & 8.62 & 1.86E+03 & 1.79E+03 \\ hole & 1.29 & 0.97 & 416.89 & 415.66 & 8.47 & 8.62 & 1.86E+03 & 1.79E+03 \\ hole & 0.65 & 0.66 & 413.62 & 413.16 & 3.98 & 3.56 & 1.80E+03 & 4.79E+02 \\ hole & 0.65 & 0.66 & 413.62 & 413.16 & 4.64 & 4.29 & 6.46E+02 & 7.42E+02 \\ hole & 0.65 & 0.66 & 413.62 & 413.16 & 4.64 & 4.29 & 6.46E+02 & 7.42E+02 \\ hole & 0.97 & -1.03 & 401.27 & 400.01 & 3.84 & 3.72 & 4.08E+03 & 9.67E+02 \\ hole & 0.97 & -1.03 & 401.27 & 400.01 & 4.54 & 4.54 & 2.94E+02 & 2.58E+02 \\ H-HrSiGeN_{4} & \mbox{electron} & 0.78 & 0.86 & 414.51 & 414.32 & 3.08 & 2.98 & 1.04E+03 & 8.93E+02 \\ hole & -0.97 & -1.03 & 401.27 & 400.01 & 4.54 & 4.54 & 2.94E+02 & 2.58E+02 \\ hole & 2.91 & 2.97 & 414.51 & 414.32 & 3.23 & 3.49 & 6.66E+01 & 5.50E+01 \\ H-MoSiGeN_{4} & \mbox{electron} & 0.34 & 0.37 & 209.52 & 209.20 & 2.31 & 2.56 & 4.99E+03 & 3.25E+03 \\ hole & -6.20 & -6.2 & 484.97 & 484.22 & 4.79 & 4.74 & 7.83E+00 & 7.96E+00 \\ H-MoSiGeP_{4} & \mbox{electron} & 1.57 & 1.8 & 468.55 & 476.69 & 3.27 & 2.51 & 2.52E+02 & 3.30E+02 \\ hole & 1.52 & 1.27 & 468.55 & 476.69 & 4.27 & 3.79 & 1.58E+02 & 2.93E+02 \\ hole & 1.52 & 1.27 & 468.55 & 476.69 & 4.27 & 3.79 & 1.58E+02 & 3.30E+02 \\ hole & 1.52 & 1.27 & 468.55 & 476.69 & 4.27 & 3.79 & 1.58E+02 & 2.93E+02 \\ H-TSiGeN_{4} & \mbox{electron} & 2.11 & 3 & 427.59 & 426.66 & 4.32 & 4.75 & 5.50E+01 & 1.51E+02 \\ H-WSiGeN_{4} & \\mbox{lectron} & 0.21 & 0.2 & 216.98 & 215.76 & 2.37 & 2.78 & 9.30E+03 & 6.69E+03 \\ H-WSiGeN_{4} & \\mbox{lectron} & 0.56 & 0.27 & 449.62 & 4492.1 & 2.32 & 5.72 & 3.75E+03 & 2.70E+03 \\ hole & 0.64 & 0.24 & 0.24 & 216.98 & 215.76 & 2.37 & 2.78 & 9.30E+03 & 6.69E+03 \\ H-WSiGeN_{4} & \\mbox{lectron} & 0.56 & 0.27 & 449.62 & 4492.1 & 2.32$                                                                                                                                                                                                        |                                    | hole     | 1.10  | 1.1   | 434.55 | 433.35 | 3.5  | 3.43         | 4.21E+02 | 4.38E+02 |
| hole 0.80 0.8 457.89 457.19 3.4 3.22 8.77E+02 9.22E+02 hole 1.50 1.7 364.79 362.43 3.35 3.50 2.04E+02 1.45E+02 2.81E+02 hole 1.77 1.52 364.79 362.43 2.78 2.81 2.15E+02 2.81E+02 1.50E+03 hole 1.29 0.97 416.89 415.66 2.28 2.05 6.84E+03 1.79E+03 hole 1.29 0.97 416.89 415.66 2.28 2.05 6.84E+03 1.79E+03 hole 0.65 hole 0.65 401.27 400.01 3.84 3.72 4.08E+03 4.79E+02 hole -0.97 -1.03 401.27 400.01 3.84 3.72 4.08E+03 9.67E+02 hole -0.97 -1.03 401.27 400.01 3.84 3.72 4.08E+03 9.67E+02 hole -0.97 -1.03 401.27 400.01 3.84 3.72 4.08E+03 9.67E+02 hole -0.97 -1.03 401.27 400.01 3.84 3.72 4.08E+03 9.67E+02 hole -0.91 2.97 414.51 414.32 3.08 2.98 1.04E+03 8.93E+02 hole 2.91 2.97 414.51 414.32 3.23 3.49 6.66E+01 5.50E+01 hole -6.20 -6.2 484.97 484.22 4.79 4.74 7.83E+00 7.96E+00 hole -6.20 -6.2 484.97 484.22 4.79 4.74 7.83E+00 7.96E+00 hole -6.20 -6.2 484.97 484.22 4.79 4.74 7.83E+00 7.96E+00 hole -1.57 1.8 468.55 476.69 3.27 2.51 2.52E+02 3.30E+02 hole 1.52 1.27 468.55 476.69 3.27 2.51 2.52E+02 3.30E+02 hole 1.52 1.27 468.55 476.69 3.27 2.51 2.52E+02 3.30E+02 hole 1.52 1.27 468.55 476.69 3.27 2.51 2.52E+02 3.30E+02 hole 1.52 1.27 468.55 476.69 3.27 2.51 2.52E+02 3.30E+02 hole 1.52 1.27 468.55 476.69 3.27 2.51 2.52E+02 3.30E+02 hole 1.52 1.27 468.55 476.69 3.27 2.51 2.52E+02 3.30E+02 hole 1.52 1.27 468.55 476.69 3.27 2.51 2.52E+02 3.30E+02 hole 1.52 1.27 468.55 476.69 3.27 2.51 2.52E+02 3.30E+02 hole 1.52 1.27 468.55 476.69 3.27 2.51 2.52E+02 3.30E+02 hole 1.52 1.27 468.55 476.69 3.27 2.51 2.52E+02 3.30E+02 hole 1.52 1.27 468.55 476.69 3.27 2.51 2.52E+02 3.30E+02 hole 1.52 1.27 468.55 476.69 3.27 2.51 2.52E+02 3.30E+02 hole 1.52 1.27 468.55 476.69 3.27 2.51 2.52E+02 3.30E+02 hole 1.52 1.27 468.55 476.69 3.27 3.77 1.58E+02 2.93E+02 hole 1.52 1.27 468.55 476.69 4.27 3.79 1.58E+02 2.93E+02 hole 1.52 1.27 468.55 476.69 3.27 2.51 2.52E+02 3.30E+02 hole 1.52 1.27 468.55 476.69 4.27 3.79 1.58E+02 2.93E+02 hole 1.52 1.27 468.55 476.69 4.27 3.79 1.58E+02 2.93E+02 hole 1.52 1.27 468.55 476.69 4.27 3.79 1.58E+02 2.93E+02 hole 1.52 1                                                                                                                                                                                                                                                   | H-WGe <sub>2</sub> N <sub>4</sub>  | electron | 0.30  | 0.31  | 457.89 | 457.19 | 2.86 | 2.50         | 8.61E+03 | 1.09E+04 |
| $ \begin{array}{l} H2z Ge_{2} A_{4} & electron & 1.50 & 1.7 & 364.79 & 362.43 & 3.35 & 3.50 & 2.04E+02 & 1.45E+02 \\ hole & 1.77 & 1.52 & 364.79 & 362.43 & 2.78 & 2.81 & 2.15E+02 & 2.81E+02 \\ \hline T+HGe_{2} N_{4} & electron & 0.21 & 0.21 & 416.89 & 415.66 & 8.47 & 8.62 & 1.86E+03 & 1.79E+03 \\ hole & 1.29 & 0.97 & 416.89 & 415.66 & 8.47 & 8.62 & 1.80E+02 & 7.42E+02 \\ hole & 0.65 & 0.66 & 413.62 & 413.16 & 3.98 & 3.56 & 1.80E+03 & 4.79E+02 \\ hole & 0.65 & 0.66 & 413.62 & 413.16 & 4.64 & 4.29 & 6.46E+02 & 7.42E+02 \\ hole & 0.97 & -1.03 & 401.27 & 400.01 & 4.54 & 4.54 & 2.94E+02 & 2.58E+02 \\ hole & 0.97 & -1.03 & 401.27 & 400.01 & 4.54 & 4.54 & 2.94E+02 & 2.58E+02 \\ hole & 0.97 & -1.03 & 401.27 & 400.01 & 4.54 & 4.54 & 2.94E+02 & 2.58E+02 \\ hole & 2.91 & 2.97 & 414.51 & 414.32 & 3.23 & 3.49 & 6.66E+01 & 5.50E+01 \\ H-MoSiGeN_{4} & electron & 0.40 & 0.41 & 484.97 & 484.22 & 1.94 & 1.63 & 1.16E+04 & 1.56E+04 \\ hole & -6.20 & -6.2 & 484.97 & 484.22 & 1.94 & 1.63 & 1.16E+04 & 1.56E+04 \\ hole & 0.33 & 0.33 & 209.52 & 209.20 & 4.04 & 4.06 & 1.73E+03 & 1.62E+03 \\ hole & 0.34 & 0.37 & 209.52 & 209.20 & 4.04 & 4.06 & 1.73E+03 & 1.62E+03 \\ hole & 1.52 & 1.27 & 468.55 & 476.69 & 3.27 & 2.51 & 2.52E+02 & 3.30E+02 \\ hole & 1.52 & 1.27 & 468.55 & 476.69 & 3.27 & 2.51 & 2.52E+02 & 3.30E+02 \\ hole & 1.52 & 1.27 & 468.55 & 476.69 & 4.27 & 3.79 & 1.58E+02 & 2.93E+02 \\ H-WSiGeN_{4} & electron & 0.31 & 0.32 & 0.32 & 511.54 & 509.90 & 2.89 & 2.55 & 8.44E+03 & 1.09E+04 \\ hole & 0.24 & 0.24 & 216.98 & 215.76 & 3.98 & 3.64 & 4.34E+03 & 5.79E+03 \\ hole & 0.24 & 0.24 & 216.98 & 215.76 & 3.98 & 3.64 & 4.34E+03 & 5.79E+03 \\ hole & 0.56 & 0.27 & 449.62 & 449.21 & 2.32 & 5.72 & 3.75E+03 & 2.70E+03 \\ hole & 0.61 & 1.01 & 1.496.2 & 449.21 & 8.61 & 8.75 & 7.74E+02 & 9.00E+01 \\ hole & 0.95 & 1.03 & 490.90 & 478.38 & 3.68 & 6.56E+02 & 4.38E+01 \\ hole & 0.95 & 1.03 & 490.90 & 478.38 & 3.68 & 6.56E+02 & 4.38E+01 \\ hole & 0.95 & 1.03 & 490.90 & 478.38 & 3.68 & 5.68E+02 & 4.58E+01 \\ hole & 0.95 & 1.05 & 490.90 & 478.38 & 3.65 & 3.68 & 6.56E+02 \\ hole & 0.51 & 0.6 & 224$                                                                                                                                                                                                |                                    | hole     | 0.80  | 0.8   | 457.89 | 457.19 | 3.4  | 3.32         | 8.77E+02 | 9.22E+02 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | H-ZrGe <sub>2</sub> N <sub>4</sub> | electron | 1.50  | 1.7   | 364.79 | 362.43 | 3.35 | 3.50         | 2.04E+02 | 1.45E+02 |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                    | hole     | 1.77  | 1.52  | 364.79 | 362.43 | 2.78 | 2.81         | 2.15E+02 | 2.81E+02 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | T-HfGe <sub>2</sub> N <sub>4</sub> | electron | 0.21  | 0.21  | 416.89 | 415.66 | 8.47 | 8.62         | 1.86E+03 | 1.79E+03 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                    | hole     | 1.29  | 0.97  | 416.89 | 415.66 | 2.28 | 2.05         | 6.84E+02 | 1.50E+03 |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | T-ScGe <sub>2</sub> N <sub>4</sub> | electron | 0.45  | -0.99 | 413.62 | 413.16 | 3.98 | 3.56         | 1.80E+03 | 4.79E+02 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                    | hole     | 0.65  | 0.66  | 413.62 | 413.16 | 4.64 | 4.29         | 6.46E+02 | 7.42E+02 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | T-ZrGe <sub>2</sub> N <sub>4</sub> | electron | 0.31  | 0.65  | 401.27 | 400.01 | 3.84 | 3.72         | 4.08E+03 | 9.67E+02 |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                    | hole     | -0.97 | -1.03 | 401.27 | 400.01 | 4.54 | 4.54         | 2.94E+02 | 2.58E+02 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | H-HfSiGeN <sub>4</sub>             | electron | 0.78  | 0.86  | 414.51 | 414.32 | 3.08 | 2.98         | 1.04E+03 | 8.93E+02 |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                    | hole     | 2.91  | 2.97  | 414.51 | 414.32 | 3.23 | 3.49         | 6.66E+01 | 5.50E+01 |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | H-MoSiGeN₄                         | electron | 0.40  | 0.41  | 484.97 | 484.22 | 1.94 | 1.63         | 1.16E+04 | 1.56E+04 |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                    | hole     | -6.20 | -6.2  | 484.97 | 484.22 | 4.79 | 4.74         | 7.83E+00 | 7.96E+00 |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | H-MoSiGeP4                         | electron | 0.33  | 0.33  | 209.52 | 209.20 | 4.04 | 4.06         | 1.73E+03 | 1.62E+03 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                    | hole     | 0.34  | 0.37  | 209.52 | 209.20 | 2.31 | 2.56         | 4.99E+03 | 3.25E+03 |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | H-TaSiGeN₄                         | electron | 1.57  | 1.8   | 468.55 | 476.69 | 3.27 | 2.51         | 2.52E+02 | 3.30E+02 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ·                                  | hole     | 1.52  | 1.27  | 468.55 | 476.69 | 4.27 | 3.79         | 1.58E+02 | 2.93E+02 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | H-TiSiGeN₄                         | electron | 2.11  | 3     | 427.59 | 426.66 | 4.11 | 3.34         | 8.08E+01 | 6.04E+01 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7                                  | hole     | 2.44  | 1.33  | 427.59 | 426.66 | 4.32 | 4.75         | 5.50E+01 | 1.51E+02 |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | H-WSiGeN₄                          | electron | 0.32  | 0.32  | 511.54 | 509.90 | 2.89 | 2.55         | 8.44E+03 | 1.09E+04 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                  | hole     | 16.50 | 16.84 | 511.54 | 509.90 | 4.81 | 4.70         | 1.15E+00 | 1.16E+00 |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | H-WSiGeP4                          | electron | 0.21  | 0.2   | 216.98 | 215.76 | 3.98 | 3.64         | 4.34E+03 | 5.79E+03 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                    | hole     | 0.24  | 0.24  | 216.98 | 215.76 | 2.37 | 2.78         | 9.30E+03 | 6.69E+03 |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | H-ZrSiGeN₄                         | electron | 1.64  | 1.92  | 394.27 | 393.35 | 3.77 | 3.97         | 1.47E+02 | 9.60E+01 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                    | hole     | 2.19  | 2.33  | 394.27 | 393.35 | 3.17 | 3.37         | 1.16E+02 | 9.10E+01 |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | T-HfSiGeN₄                         | electron | 0.56  | 0.27  | 449.62 | 449.21 | 2.32 | 5.72         | 3.75E+03 | 2.70E+03 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 11101001.4                       | hole     | 1.08  | 1 11  | 449.62 | 449 21 | 8.61 | 8 75         | 7 41E+01 | 6.82E+01 |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | T-ZrSiGeN₄                         | electron | 0.22  | 0.61  | 431.75 | 431.04 | 3.48 | 2.68         | 1.01E+04 | 2.31E+03 |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 21510014                         | hole     | 1.01  | 1 28  | 431.75 | 431.04 | 5 34 | 5 48         | 2 11E+02 | 1.25E+02 |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | H-CrSiCN4                          | electron | 0.95  | 1.03  | 490.90 | 478 38 | 6.93 | 6.62         | 1.62E+02 | 1.48E+02 |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11 0101014                         | hole     | 0.95  | 1.05  | 490.90 | 478 38 | 3 45 | 3.68         | 6 56F+02 | 4 55E+02 |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | H-CrSiCP                           | electron | 0.25  | 0.76  | 224 25 | 228.76 | 1 25 | 2.12         | 3 33E+04 | 1 27E+03 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11 0101014                         | hole     | 0.51  | 0.70  | 224.25 | 228.76 | 2.05 | 2.12         | 2 98F+03 | 1.270+03 |
| hole $5.55$ 0.99 $372.21$ $371.14$ 2.9 $2.47$ $2.04E+01$ $8.83E+02$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | H-VSiCN.                           | electron | 0.72  | 0.82  | 372 21 | 371 14 | 3    | 3 13         | 1 13E+03 | 8 01F+02 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                    | hole     | 5.55  | 0.99  | 372.21 | 371.14 | 2.9  | 2.47         | 2.04E+01 | 8.83E+02 |

#### References

- 1 Atsushi, Togo, Fumiyasu, Oba, Isao and Tanaka, Phys. Rev. B, 2008, 78 134106.
- 2 X. Gonze and C. Lee, *Phys. Rev. B*, 1997, **55**, 10355--10368.
- 3 V. Wang, N. Xu, J.-C. Liu, G. Tang and W.-T. Geng, Comput. Phys. Commun., 2021, 267, 108033.
- J. K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J. R. Kitchin, T. Bligaard and H. Jónsson, J. Phys. Chem. B, 2004, 108, 17886-17892.