Supplementary Materials of

Exsolved medium-entropy alloy FeCoCuNi in titanate fibers enables solid

oxide cells with superb electrochemical performance

Zilin Zhou, a Jiajia Cui, a,b,* Zhengrong Liu, a Jiaming Yang, a Yueyue Sun, a

Chaofan Yin, ^a Zixuan Xue, ^a Jiaxi Niu, ^a Jingze Liu, ^a Kai Wu ^{a,*} and Jun Zhou ^{a,*}

^{a.} Center of Nanomaterials for Renewable Energy, State Key Laboratory of

Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049,

People's Republic of China.

^{b.} School of Materials Science and Engineering, Xi'an University of Technology,

Xi'an 710048, Shaanxi, People's Republic of China.

The PDF file includes:

- Detailed preparation process of electrode
- Entropy calculation of multi-element alloy
- Faraday efficiency calculation
- Modeling of density functional theory calculation
- Reaction steps of co-electrolysis of CO₂ and H₂O
- Fig.S1. Section images of solid oxide cell
- Fig.S2. XRD and SEM images of LST fiber
- Fig.S3. Refined XRD images of LSTFCCN fiber
- Fig.S4. X-ray Photoelectron Spectroscopy (XPS) analysis of LSTFCCN fiber
- Fig.S5. Current-Voltage curve of LSTX cell under SOFC mode
- Fig.S6. Maximum power density of LSTX cell under SOFC mode
- Fig.S7. Short-time stability of LSTX cell under SOFC mode

- Fig.S8. Current-Voltage curve of LSTX cell under SOEC mode
- Fig.S9. Models of absorption energy calculation
- Fig.S10. Models of CO₂RR Gibbs free energy calculation
- Table.S1. Ratio of raw materials in LSTX fuel electrode preparation
- Table.S2. Lattice parameters of single-doped LSTX
- Tabld.S3. SOFC performance of single-doped LSTX electrode
- Table.S4. SOEC performance of single-doped LSTX cell
- Table.S5. Predicted adsorption energies for LST and LSTFCCN surfaces
- Table.S6. Specific Value of Atomic Bader Charge
- Table.S7. Comparison with SOEC/SOFC performance in other studies

Detailed preparation process of electrode

^{Φ}Electrospinning: A series of La_{0.4}Sr_{0.4}Ti_{0.9}X_{0.1}O₃ (LSTX) nanofiber perovskite oxides with different concentrations of precursors PVP are prepared. Meanwhile, porous LSTX particles are prepared by sol-gel method for comparison, and the ratio is shown in Table.S1. According to the 0.004 mol target LSTX product, we weigh $La(NO_3)_3 \cdot 6H_2O$, $Sr(NO_3)_3 \cdot 6H_2O$, $Ni(NO_3)_3 \cdot 6H_2O$, $Fe(NO_3)_3 \cdot 6H_2O$, $Co(NO_3)_3 \cdot 6H_2O$, $Cu(NO_3)_2 \cdot 6H_2O$ and tetrabutyl titanate on the basis of stoichiometric ratio, and add them into appropriate amount of DMF solvent. A little acetic acid is also added to create a weak acid environment, and then an appropriate amount of PVP is added, and the mixed liquor is heated at 70 °C with magnetic stirring to obtain a transparent and viscous precursor solution. The electrospinning voltage is 15 kV, distance between needle and roller collector is 12 cm, and the injection speed is 3μ l·min⁻¹.

²Synthesis of electrode materials: The obtained LSTX precursor fiber and the dry gel powder prepared by sol-gel method are transferred into a high-temperature box-type furnace. Firstly, the samples are heated to 400°C at the rate of 1°C·min⁻¹ and kept for an hour. Then the temperature is increased to 900 °C at a rate of 5 °C·min⁻¹, kept for 3 hours and then cooled down at a rate of 5 °C·min⁻¹.

³Preparation of cell: Firstly, appropriate amount of GDC powder is fully ball-milled with ethyl cellulose and terpineol solution for 24 hours to obtain GDC suspension. Secondly, the GDC suspension is evenly spun on the surface of SSZ electrolyte sheet. After spinning, SSZ electrolyte sheet is dried at 70 °C and then calcined at 1300 °C for 3 hours to obtain the electrolyte skeleton structure of "GDC|SSZ|GDC" initially. In the third step, terpineol and ethyl cellulose are fully mixed to make a viscous solution, while the electrode material powder and appropriate amount of solution are evenly ground to make a certain viscosity of the electrode material suspension. Through the screen pressing, the suspension is printed to the surface of the GDC layer and dried at 70°C, then being calcinated at 800 °C for 3 hours. Finally, we could obtain "electrode [GDC]SSZ|GDC|electrode" five-layer sandwich structured single cell.

Entropy calculation of multi-element alloy

According to Fig.2E, the entropy of FCCN alloy can be calculated as follows:

 $\Delta S_{Fe} = -0.1499 \times \ln 0.1499 = 0.2844$

 $\Delta S_{Co} = -0.1546 \times \ln 0.1546 = 0.2886$

$$\Delta S_{Ni} = -0.2526 \times \ln 0.2526 = 0.3476$$
$$\Delta S_{Cu} = -0.4429 \times \ln 0.4429 = 0.3607$$
$$\Delta S = \Delta S_{Fe} + \Delta S_{Co} + \Delta S_{Ni} + \Delta S_{Cu} = 1.2813$$

Entropy of FCCN alloy is higher than 1 and lower than 1.5, which means it is Medium-Entropy-Alloy.

Faraday efficiency calculation

Faraday efficiency is also calculated to characterize the electrolysis performance of LSTX cell, the equations are as follows:

$$FE_{CO} = \frac{\frac{v_{CO}}{1000 + 22.4} + 2 + 96485}{I + 60} = \frac{v_{CO}}{6.9648 + I}$$

$$FE_{H_2} = \frac{\frac{v_{H_2}}{1000 + 22.4} + 2 + 96485}{I + 60} = \frac{v_{H_2}}{6.9648 + I}$$

$$FE_{H_2} = \frac{\frac{v_{CH_4}}{1000 + 22.4} + 8 + 96485}{I + 60} = \frac{v_{CH_4}}{1.7412 + I}$$

$$FE_{CH_4} = \frac{v_{CH_4}}{I + 60} = \frac{v_{CH_4}}{1.7412 + I}$$

$$FE_{CH_4} = \frac{v_{CH_4}}{v_{CH_4} + v_{CO}}$$

$$T_{CO_2} = \frac{v_{CO} + v_{CH_4}}{v_{CO_2}}$$

Where: FE_{CO} : Faraday efficiency of CO

 v_{CO} : volume of CO gas generated on each unit area at fuel electrode/ml·min⁻¹·cm⁻² *I*: current density/A·cm⁻² FE_{H_2} : Faraday efficiency of H₂

 v_{H_2} : volume of H₂ gas generated on each unit area at fuel electrode/ml·min⁻¹·cm⁻²

 FE_{CH_4} : Faraday efficiency of CH_4

 v_{CH_4} : volume of CH₄ gas generated on each unit area at fuel electrode/ml·min⁻¹·cm⁻² S_{CH_4} : selectance of CH₄ T_{CO_2} : conversion rate of CO₂

Modeling of density functional theory calculation

Firstly, the LST unit cell is modeled with a supercell model which contains 80 atoms $(La_8Sr_8Ti_{16}O_{48})$. Then the (110) surface slab is cleaved from the optimized supercell model of LST with O-terminations, and a 20 Å vacuum layer is attached to the upper surfaces of the slab. The FeCoCuNi atomic cluster is constructed on the upper surface of (110) surface slab to investigate the effects of FCCN alloys on the catalytic property on CO₂ reduction. Next, a CO₂ molecule with or without FeCoCuNi atomic cluster is adsorbed on the surface. In the case of LSTFCCN model, the CO₂ molecule is placed directly on the top of FCCN atomic cluster. For all structural optimizations, the atoms in the bottom layer of LST or LSTFCCN slab are fixed.

Reaction steps of electrolysis reaction of CO₂ and H₂O

$$CO_{2}(g) + H_{2}O(g) \rightarrow H_{2}(g) + CO(g) + CH_{4}(g) + O_{2}(g)\#(S1-1)$$

$$H_{2}O(g) + 2e^{-} \rightarrow H_{2}(g) + O^{2-}\#(S1-2)$$

$$CO_{2}(g) + 2e^{-} \rightarrow CO(g) + O^{2-}\#(S1-3)$$

$$H_{2}(g) + CO_{2}(g) \rightleftharpoons H_{2}O(g) + CO(g)\#(S1-4)$$

$$CO(g) + 3H_{2}(g) \rightleftharpoons CH_{4}(g) + H_{2}O(g)\#(S1-5)$$

 $C(s) + H_2 O(g) \rightleftharpoons CO(g) + H_2(g) \# (S1-6)$

Fig.S1 SEM images of the cell's section.

Fig.S2 (a)-(b) XRD analysis of LST fiber before and after reduction. (c)-(d) SEM images of LST fiber, the left one is the fiber before reduction, and the right one is the fiber after reduction.

Fig.S3 (a)-(b) XRD analysis of LSTFCCN fiber before and after reduction.

Fig.S4 X-ray Photoelectron Spectroscopy (XPS) analysis of LSTFCCN fiber

Fig.S6 Maximum power density of LSTX cell under SOFC mode

Fig.S7 Short-time stability of LSTX cell under SOFC mode

Fig.S9-1 Structures with different absorption sites after geometry optimization when only CO₂ was absorbed on surface. As for the bulk, light green balls are La atoms, deep green balls are Sr atoms, light blue balls are Ti atoms, brown balls are C atoms, and red balls are O atoms.

Fig.S9-2 Structures with different absorption sites after geometry optimization when cluster and CO₂ were co-absorbed on surface. As for the bulk, light green balls are La atoms, deep green balls are Sr atoms, light blue balls are Ti atoms, brown balls are C atoms, and red balls are O atoms. The 4 circled atoms form FCCN cluster.

Fig.S10-1 Models of CO₂RR energy calculation (only CO₂ absorbed). As for the bulk, light green balls are La atoms, deep green balls are Sr atoms, light blue balls are Ti atoms, brown balls are C atoms, and red balls are O atoms.

Fig.S10-2 Models of CO₂RR energy calculation (CO₂ and FCCN cluster co-absorbed). As for the bulk, light green balls are La atoms, deep green balls are Sr atoms, light blue balls are Ti atoms, brown balls are C atoms, and red balls are O atoms. The 4 circled atoms form FCCN cluster.

Fuel electrode	Concentration of PVP	Mass of PVP	
LSTX particles	None (prepared by sol-gel method)		
LSTX7	7 wt%	0.85 g	
LSTX10	10 wt%	1.26 g	
LSTX13	13 wt%	1.69 g	
LSTX16	16 wt%	2.16 g	
LSTX13-GDC complex fiber electrode	$12 \text{ w/t} \theta/$	1.60 g	
(mass ratio = 7:3)	15 wt70	1.09 g	

Tabel.S1 Ratio of raw materials in LSTX fuel electrode preparation

Table.S2-1 Lattice parameters of LSTX fiber			
Material	a/Å	Space group	
Wateria	(a=b=c)	Space group	
LST	3.89472		
LSTFe	3.89804		
LSTCo	3.90173	Dm 2m	
LSTCu	3.90250	F111-3111	
LSTNi	3.89669		
LSTFCCN	3.89925		

Table.S2-2 Lattice parameters of LSTX fiber after reduction

Material	Content (mol ratio)	$a/\text{\AA} (a = b = c)$	Space group
LST	100%	3.89598	Pm-3m
LSTFe	96.88%	3.90127	Pm-3m
Fe	3.12%	3.50817	Fm-3m
LSTCo	96.75%	3.90752	Pm-3m
Со	3.25%	3.53869	Fm-3m
LSTCu	93.14%	3.89593	Pm-3m
Cu	6.86%	3.61431	Fm-3m
LSTNi	95.57%	3.89239	Pm-3m
Ni	4.43%	3.49752	Fm-3m
LSTFCCN	95.41%	3.90210	Pm-3m
FeCoCuNi	4.59%	3.55284	Fm-3m

	Electrophomical -		Fuel gas			
LSTX cell	Broportios	TT	$\mathrm{H}_2/\mathrm{CH}_4$	$\mathrm{H}_2/\mathrm{CH}_4$	$\mathrm{H}_2/\mathrm{CH}_4$	CU
	rioperties	H_2	3:1	1:1	1:3	CH ₄
LST		528	450	386	314	228
LSTFe	P _{Max} /mW⋅cm ⁻²	714	621	497	414	282
LSTCo		828	765	693	601	449
LSTCu		758	649	548	466	382
LSTNi		856	759	650	535	447
LSTFCCN		1011	877	731	622	529

Table.S3-1 P_{Max} of LSTX cell under SOFC working mode

Table.S3-2 R_p of LSTX cell under SOFC working mode

	Elastrashamiaal .	Fuel gas				
LSTX cell Pr	Broportios	TT	$\mathrm{H}_2/\mathrm{CH}_4$	$\mathrm{H}_2 / \mathrm{CH}_4$	$\mathrm{H}_2/\mathrm{CH}_4$	CU
	riopetites	П2	3:1	1:1	1:3	СП4
LST		0.302	0.377	0.457	0.536	0.780
LSTFe	$P_{\rm s}/Q_{\rm s}$ cm ²	0.206	0.265	0.330	0.416	0.551
LSTCo		0.128	0.173	0.219	0.316	0.425
LSTCu	Rp/22 ⁻ CIII ²	0.187	0.237	0.294	0.367	0.438
LSTNi		0.143	0.176	0.211	0.286	0.383
LSTFCCN		0.111	0.161	0.192	0.226	0.311

Table.S4-1 Electrochemical performance of LSTX cell under SOEC working mode

LSTX cell Fuel gas		Current density	Polarization resistance under different voltage/ Ω ·cm ²				
	C	under $1.3V/A \cdot cm^{-2}$	1.1 V	1.2V	1.3V	1.4V	1.5V
	CO_2	0.149	1.606	1.181	0.915	0.712	0.631
I STE	2:1	0.228	1.356	0.982	0.789	0.579	0.486
LSIFe	1:1	0.375	1.147	0.849	0.642	0.509	0.411
	1:2	0.478	0.839	0.694	0.429	0.370	0.325
	CO_2	0.374	0.753	0.583	0.472	0.371	0.291
LSTCo	2:1	0.525	0.583	0.405	0.285	0.258	0.220
	1:1	0.662	0.540	0.357	0.263	0.208	0.181
	1:2	0.794	0.359	0.287	0.216	0.180	0.163
LSTCu	CO ₂	0.300	1.004	0.711	0.585	0.472	0.366

	2:1	0.306	0.928	0.670	0.529	0.439	0.357
	1:1	0.316	0.910	0.632	0.496	0.401	0.351
	1:2	0.370	0.866	0.609	0.459	0.384	0.330
	CO ₂	0.324	0.783	0.626	0.468	0.367	0.314
LOTNI:	2:1	0.416	0.607	0.491	0.402	0.335	0.303
LSINI	1:1	0.454	0.522	0.390	0.342	0.300	0.270
	1:2	0.591	0.467	0.358	0.301	0.268	0.229

Table.S5 Predicted adsorption energies for LST and LSTFCCN surfaces

System	$E_{abs/eV}$
LaSrTi ₂ O ₆	-0.3099
LaSrTi ₂ O ₆ + FeCoNiCu	-1.4808

Table.S6 Specific Value of Atomic Bader Charge				
Atom	Cha	rge		
Atom	Single adsorbed	Co-adsorbed		
С	0.000000	0.000001		
O1	8.324242	8.017715		
O2	8.004517	7.995289		
Fe		15.447237		
Co		16.587404		
Ni		17.843711		
Cu		10.575723		

Table.S7 Comparison of performance with others' researches

Material	Power Density/W · cm ⁻ 2	Current Density/A · cm ⁻²	Experimental Conditions
LSTFCCN	1.01	0.85	
SBF ^{S1}	0.84	1.01	
PBC-BCW ^{RS2}	0.75	0.84	
NBCCF ^{S3}	0.94	0.92	SOFC mode: 800 °C
(La/Sr)(Ti/Fe)O ^S 4	0.70	0.52	SOEC mode: 1.3 V
PS30C ^{S5}	0.83	1.19	
PBNF0.1 ^{S6}	0.65	0.90	

References:

S1 Zhang M, Du Z, Sun Z, et al. Unraveling the promotional role of $BaCO_3$ in the electrode reaction kinetics of an SmBaFe₂O_{5+ δ} air electrode of reversible solid oxide cells[J]. Journal of Materials Chemistry A, 2023, 11(40): 21645-21654.

S2 Zhang M, Liu J, Du Z, et al. Highly active and stable oxygen electrode $PrBaCo_2O_{5+\delta}-Ba_2CoWO_6$ enabled by In Situ formed misfit dislocation interface for reversible solid oxide cell[J]. Applied Catalysis B: Environment and Energy, 2025, 361: 124669.

S3 Tian Y, Liu Y, Wang W, et al. High performance and stability of double perovskite-type oxide NdBa_{0. 5}Ca_{0. 5}Co_{1. 5}Fe_{0. 5}O_{5+ δ} as an oxygen electrode for reversible solid oxide electrochemical cell[J]. Journal of Energy Chemistry, 2020, 43: 108-115.

S4 Zhang L, Li Y, Zhang B, et al. (La, Sr) (Ti, Fe) $O_{3-\delta}$ perovskite with in-situ constructed FeNi3 nanoparticles as fuel electrode for reversible solid oxide cell[J]. International Journal of Energy Research, 2021, 45(15): 21264-21273.

S5 Hu H, Wang C, Ni J, et al. Sr-Doped PrCrO3 with Intelligent SrCrO_x Cocatalyst for the Fuel Electrode of Reversible Solid Oxide Cells[J]. ACS Sustainable Chemistry & Engineering, 2024, 12(10): 4051-4060.

S6 Li Z, Yang B, Qian B, et al. Evaluation of Fe-doped Pr_{1.8}Ba_{0.2}NiO₄ as a high-performance air electrode for reversible solid oxide cell[J]. Separation and Purification Technology, 2023, 308: 123002.