### **Supporting Information**

# Multifunctional ionic liquid additive providing solvation structure and electrostatic shielding layer for high-stable aqueous zinc ion batteries

4 **1. Experimental section** 

Electrolyte preparation: Zinc sulfate (ZnSO<sub>4</sub>, Macklin, 99%) was dissolved in deionized (DI) water to
prepare a 2 M ZnSO<sub>4</sub> electrolyte, which was used as a blank electrolyte(BE). The control group used different
concentrations (0.5%, 1%, 1.5%) of 1-butyl-3-methylimidazolium hexafluorophosphate (C<sub>8</sub>H<sub>15</sub>F<sub>6</sub>N<sub>2</sub>P,
Aladdin, 99%, [BMIM]PF<sub>6</sub>) was added to the prepared 2 M ZnSO<sub>4</sub> electrolyte to obtain the [BMIM]PF<sub>6</sub>
additive-containing .The optimum concentration of [BMIM]PF<sub>6</sub> systems is 1% [BMIM]PF<sub>6</sub> + 2 M ZnSO<sub>4</sub>,
and the corresponding electrolyte is abbreviated as [BMIM]PF<sub>6</sub>/BE.

11 Preparation of electrodes Purchased zinc foils (thickness: 100 µm, 99.99%) were polished with sandpaper to remove the passivation layer. The Zn foil was then cut into a disc with a diameter of 16 mm to serve as the 12 Zn electrode. NH<sub>4</sub>V<sub>4</sub>O<sub>10</sub> was synthesized using a hydrothermal method. i.e. 1.17 g of ammonium vanadate 13 (NH<sub>4</sub>VO<sub>3</sub>, Aladdin, AR) was dissolved in 70 mL of deionized water. Then 1.891 g of oxalic acid (Aladdin, 14 AR) powder was added to the NH<sub>4</sub>VO<sub>3</sub> solution under magnetic stirring. The solution was transferred to a 100 15 16 mL tetrafluoroethylene lined autoclave and heated at 140 °C for 12 h. After cooling, the product was collected, washed repeatedly with deionized water, and then dried at 70 °C overnight to give the final NH<sub>4</sub>V<sub>4</sub>O<sub>10</sub> powder. 17 18 A NH<sub>4</sub>V<sub>4</sub>O<sub>10</sub> electrode slurry was formed by fusion stirring with NH<sub>4</sub>V<sub>4</sub>O<sub>10</sub> powder, Ketjen black (KB), and 19 PTFE (mass ratio 75:15:10), and then the slurry was cast on a stainless steel mesh. After drying in air at 70  $^{\circ}$ C overnight, NH<sub>4</sub>V<sub>4</sub>O<sub>10</sub> electrodes containing 1.3-2.6 mg cm<sup>-2</sup> were finally obtained. 20 The monomer (2 g acrylamide) was dissolved in 10mL of an aqueous electrolyte (2 M ZnSO<sub>4</sub>), and then the 21

22 initiator [15 mg (NH<sub>4</sub>)<sub>2</sub>S<sub>2</sub>O<sub>8</sub> (Aladdin, AR)] and cross-linking agent [2.5 mg N, N'-methylene bis(acrylamide)

23 (Aladdin, 99%)] were added and stirred for 30 min. Alternatively, it was injected into a mold of the designed

thickness. After polymerization at 60 °C for 1.5 h, a Polyacrylamide (PAM) hydrogel film was formed, named
PAM. the composite gel electrolyte obtained by adding 1% [BMIM]PF<sub>6</sub> before polymerization was noted as
PAM-1%[BMIM]PF<sub>6</sub>.

27 2.Test section

Materials Characterization: The prepared NH<sub>4</sub>VO<sub>3</sub> powder and zinc anode were physically analyzed using 28 a MiniFlex600 X-ray diffractometer. The XRD scanning range used in the experiments was 5~80°, and the 29 XRD scanning speed was set at 10°/min. Fourier transform infrared (FTIR) spectroscopy was tested by a 30 Nicolet IS10 Fourier transform infrared spectrometer, with a scanning range of 4000 cm<sup>-1</sup>~400 cm<sup>-1</sup>. X-ray 31 photoelectron spectroscopy was collected by an EscaLab Xi<sup>+</sup> XPS system. X-ray photoelectron spectra were 32 collected by the EscaLab Xi<sup>+</sup> XPS system, which uses a monochromatic Al K $\alpha$  X-ray source (hv = 1486.633 eV). The morphology of the samples was observed by a field emission scanning electron microscope (SEM, 34 35 Gemini SEM 300) field emission scanning electron microscope on the morphological structure of the experimental samples. 36

Electrochemical Characterization: Purchased zinc foils (thickness: 100 µm and 20 µm, 99.99%) were 37 polished with sandpaper to remove the passivation layer. The zinc foil was then cut into a 16 mm diameter 38 disc to serve as the zinc electrode. All tested CR2032 type coin batteries were assembled in an open-air 39 environment using glass fiber filters (GF/D, Whatman) as diaphragms. The amount of electrolyte used for the 40 coin battery was 120 µL. two identical zinc plates with a thickness of 100 µm were used to make a symmetrical 41 battery. Zn//Cu half batteries were assembled using a copper foil of 20 µm thickness as the working electrode 42 and a zinc foil of 100  $\mu$ m thickness as the reference and counter electrodes. The NH<sub>4</sub>V<sub>4</sub>O<sub>10</sub>//Zn full battery 43 was assembled using a Zn plate with a thickness of 100 µm as the anode and NH<sub>4</sub>V<sub>4</sub>O<sub>10</sub> as the cathode. The 44 blank electrolyte and [BMIM]PF<sub>6</sub> electrolyte were used for the electrolyte. The NH<sub>4</sub>V<sub>4</sub>O<sub>10</sub> cathode (16 mm 45

diameter, circular piece) was combined with the Zn anode (100  $\mu$ m thickness), and glass fiber was used as the diaphragm to assemble the NH<sub>4</sub>V<sub>4</sub>O<sub>10</sub>//Zn full battery. The NH<sub>4</sub>V<sub>4</sub>O<sub>10</sub> cathode (2 cm<sup>2</sup>) was combined with a Zn anode (100  $\mu$ m thickness) and assembled into NH<sub>4</sub>V<sub>4</sub>O<sub>10</sub>//Zn flexible batteries using PAM-[BMIM]PF<sub>6</sub> hydrogel electrolyte as a flexible diaphragm. The NH<sub>4</sub>V<sub>4</sub>O<sub>10</sub>//Zn battery was discharged/charged under a potential control of 0.3 ~ 1.4 V using a NEWARE battery tester.

Electrochemical characterization: Tafel plots were measured with Zn plate as the working electrode, Pt foil as 51 the counter electrode, and saturated dimercury dichloride as the reference electrode, scanning at  $-0.7 \sim -1.2$  V 52 in 2 mV s<sup>-1</sup> band. Chronoamperometry (CA), when measured at a fixed overpotential of -0.15 V. Cyclic 53 voltammetry (CV) curves of plated/stripped zinc, were measured with a Zn//Ti battery in the voltage range of 54 -1.5 V ~ 2.0 V at 1 mV s<sup>-1</sup>. Hydrogen precipitation potentials were determined using linear scanning 55 voltammetry (LSV) with a scan rate of 1 mV s<sup>-1</sup> in the BE and [BMIM]PF<sub>6</sub>/BE systems. The electrochemical 56 impedance spectroscopy (EIS) of the Zn//Zn symmetric battery was analyzed in the frequency range of 0.01 57 Hz ~ 100 k Hz. By fitting the obtained  $R_{ct}$ , the activation energy  $E_a$  was calculated according to Arrhenius' 58 59 law.

#### 60 **DFT calculation method:**

61 The density functional theory (DFT) simulations are performed using the CASTEP program package in 62 Materials Studio. The exchange-correlation interaction is described by generalized, gradient approximation 63 (GGA) with the Perdew-Burke-Ernzerhof (PBE) functional.

For the construction of surface models, a 15 Å vacuum is used to eliminate interactions between periodic structures. And the Zn (002) slab is constructed with lattice constants of a = b = 15.6862 Å, c = 22.3097 Å,  $\alpha$  $= \beta = 90^{\circ}$  and  $\gamma = 120^{\circ}$ . And one molecular of [BMIM]<sup>+</sup> or H<sub>2</sub>O is put on the Zn (002) surface. And the adsorption energy (E<sub>abs</sub>) of [BMIM]<sup>+</sup> or H<sub>2</sub>O on Zn (002) surface was calculated, by the formula: E<sub>abs</sub> = E<sub>total</sub>  $= E_{M} - E_{S}$ , where E<sub>total</sub>, E<sub>M</sub> and E<sub>S</sub> are the energy of, respectively, the total system, the [BMIM]<sup>+</sup> or H<sub>2</sub>O 69 molecular, and Zn (002) surface.

The binding energy ( $E_{binding}$ ) between  $Zn^{2+}$ , [BMIM]<sup>+</sup>,  $SO_4^{2-}$  and  $H_2O$  molecular was calculated by the, formula:  $E_{binding} = E_{total} - E_a - E_b$ , where  $E_{total}$  is the energy of the total system,  $E_a$  and  $E_b$  are the, energies of components in the system.

## 73 Molecular dynamic (MD) simulations

Molecular dynamic (MD) simulations were applied to investigate the solvation structures for two 74 considered electrolytes denoted as S1 and S2. For S1 system, the solution was comprised of 50 ZnSO<sub>4</sub> and 75 76 1375 H<sub>2</sub>O molecules. For S2, the solution contained 50 ZnSO<sub>4</sub>, 10 [BMIM]PF<sub>6</sub> and 1375 H<sub>2</sub>O molecules. All solution components were randomly packed into cubic simulation boxes. All MD simulations were carried 77 out by Forcite module with COMPASS III force field <sup>1,2</sup> in MS 2020. Van der Waals and Coulomb interactions 78 were respectively considered by atom based and Ewald methods with a cut-off value of 12.5 Å. Equations of 79 motion were integrated with a time step of 1 fs. After energy minimization, the electrolyte system was fully 80 relaxed under periodic boundary conditions for 400 ps in the NPT (P = 1 atmosphere, T = 298.0 K) ensemble 81 using the Nose thermostat and Berendsen barostat, which was long enough for system temperature, potential 82 and total energy to get stable. After reaching equilibrium state, another 400 ps simulation under NVT ensemble 83 was performed to extract trajectory and data for radical distribution function (RDF) and coordination number 84 (CN) calculation. The dynamic trajectory for each system was outputted at an interval of 4 ps. The 85 coordination number Ni of atom i in the first solvation shell surrounding  $Zn^{2+}$  was calculated as: 86

87

$$N_{i} = 4\pi\rho \int_{0}^{R_{M}} g\left(r\right) r^{2} dr \tag{1}$$

in which  $R_M$  is the distance of the first minimum following the first peak in the RDF g(r) and  $\rho$  is the number density of atom i<sup>3</sup>.





Fig. S1 The cyclic voltammetry (CV) curves for Zn//Zn cells in (a) BE system, (b) [BMIM]PF<sub>6</sub>/BE system.
 The calculated electric double layer capacitance for cells in (c) BE system, (d) [BMIM]PF<sub>6</sub>/BE system.



Fig. S2. The electrochemical stability window of the electrolytes with various doping concentrations of [BMIM]PF<sub>6</sub> additives was tested on Ti electrodes by scanning at a rate of 1 mV s<sup>-1</sup>.



**Fig. S3.** Tafel curves for BE system and different concentrations of [BMIM]PF<sub>6</sub>/BE systems.



Fig. S4. Electrochemical impedance spectroscopy of batteries assembled with [BMIM]PF<sub>6</sub> at different
 concentrations.







105

106 Fig. S6. High resolution XPS spectra of zinc metal electrodes after 50 cycles with (a) [BMIM]PF<sub>6</sub>/BE

107 system and (**b**) BE system at 1 mA cm<sup>-2</sup> and 1 mAh cm<sup>-2</sup>. High-resolution XPS spectra of the Zn metal

electrodes after 50 cycles with BE system at 1 mA cm<sup>-2</sup> and 1 mAh cm<sup>-2</sup>: (c) S 2p.



109

Fig. S7. Comparison of EIS curves of Zn//Zn symmetric cells in different electrolytes (a) initial and (b) after
 i-t test; current-time plots of electrolytes (c) without [BMIM]PF<sub>6</sub> and (d) with [BMIM]PF<sub>6</sub>,

respectively, at a constant voltage of 15 mV for 1000 seconds.

113

Auxiliary note: The  $Zn^{2+}$  transfer number  $(t_{zn}^{2+})$  was calculated according to the BruceVincent method:

115 
$$t_{zn^{2+}} = \frac{I_s(V - I_0 R_0)}{I_0(V - I_S R_S)}$$

where V is the applied potential (15 mV); I<sub>0</sub> and R<sub>0</sub> are the initial current and the interface resistance; I<sub>s</sub> and R<sub>s</sub> represent the steady-state current and interface resistance, respectively. Therefore, the value of  $t_{zn}^{2+}$  can be calculated to be 0.66 for the [BMIM]PF<sub>6</sub>/BE system, while the value is only 0.36 for the BE system.





**Fig. S8.** The comparison of binding energies between  $Zn^{2+}\&H_2O$ ,  $Zn^{2+}\&[BMIM]^+$  and  $[BMIM]^+\&H_2O$ .





**Fig. S9. (a)** Impedance spectra and **(b)** ionic conductivities in the BE and [BMIM]PF<sub>6</sub>/BE systems.



124 Fig. S10. Nyquist plots of Zn//Zn symmetric cells at different temperatures in (a) BE and (b)

125 [BMIM]PF<sub>6</sub>/BE systems.

126

127



Fig. S11. Nyquist plots and fitted curves in the BE system without [BMIM]PF<sub>6</sub> (upper panel) and with
[BMIM]PF<sub>6</sub> (lower panel) at (a), (e) 0 cycling cycle, (b), (f) 10 cycling cycles, (c), (g) 20 cycling cycles,
(d), (h) 30 cycling cycles (three tests at the same cycle are shown in the same figure).



Fig. S12. Stability of Zn//Zn cells using electrolytes with [BMIM]PF<sub>6</sub> and without [BMIM]PF<sub>6</sub> additive at 4 mA cm<sup>-2</sup> conditions.



**Fig. S13.** Cycling stability of Zn//Zn batteries with and without [BMIM]PF<sub>6</sub> electrolytes under 4 mA cm<sup>-2</sup>:

137 (a) 10-20h; (b) 210-220h; (c) 310-320h.



**Fig. S14.** Rate performance of Zn//Zn batteries in 2 M ZnSO<sub>4</sub>+0.5% [BMIM]PF<sub>6</sub>.







Fig. S16. corresponding voltage profiles at various cycles in ZnSO<sub>4</sub> electrolyte (a) without and (b) with
[BMIM]PF<sub>6</sub> additive.



- **Fig. S17.** SEM images of Zn anode surface morphology after cycling: (a) in BE system, (b) in [BMIM]PF<sub>6</sub>/BE
- 148 system.



Fig. S18. XRD patterns of the Zn anodes with Zn//Cu half-cells in different electrolytes after 20 cycles at 1
 mA cm<sup>-2</sup> and 1 mAh cm<sup>-2</sup>.







**Fig. S20.** XRD patterns of NH<sub>4</sub>V<sub>4</sub>O<sub>10</sub> powder.



Fig. S21. CV profiles of the Zn//NH<sub>4</sub>V<sub>4</sub>O<sub>10</sub> batteries with different electrolytes. (a) Pure ZnSO<sub>4</sub> and (b)
 ZnSO<sub>4</sub>+1% [BMIM]PF<sub>6</sub> electrolytes. (c) Comparison of the 3rd cycle of CV curves.





**Fig. S22.** Electrostatic charge/discharge curves of the Zn//NH<sub>4</sub>V<sub>4</sub>O<sub>10</sub> full cells at different current densities.



**Fig. S23.** Demonstrate the voltage variation of a PAM-[BMIM]PF<sub>6</sub> battery under (**a**) flat, (**b**) bent, (**c**) twisted,

166 and (**d**) shear conditions.



**Fig. S24.** Corresponding cycle performance of PAM-[BMIM]PF<sub>6</sub> flexible full cell at 1 A  $g^{-1}$ .

| 1/1        |                                                                                                       |                               |                       |                  |                                |  |  |
|------------|-------------------------------------------------------------------------------------------------------|-------------------------------|-----------------------|------------------|--------------------------------|--|--|
| 172        |                                                                                                       | With [BMIM]                   | PF <sub>6</sub>       |                  |                                |  |  |
| 173        |                                                                                                       | T(K)                          | R <sub>ct</sub> (Q)   | Error (%)        | $\ln(R_{ct}^{-1}/Q^{-1})$      |  |  |
| 174<br>175 |                                                                                                       |                               |                       |                  |                                |  |  |
| 175        |                                                                                                       | 303                           | 1030.1                | 0.90             | -6.94                          |  |  |
| 177        |                                                                                                       | 313                           | 885.4                 | 0.83             | -6.79                          |  |  |
| 178        |                                                                                                       | 323                           | 621.1                 | 1.02             | -6.43                          |  |  |
| 179        |                                                                                                       | 333                           | 344.3                 | 1.07             | -5.84                          |  |  |
| 180        |                                                                                                       | 343                           | 199.9                 | 1.32             | -5.29                          |  |  |
| 182        |                                                                                                       |                               |                       | 1.02             |                                |  |  |
| 183        |                                                                                                       | Without [BMIM]PF <sub>6</sub> |                       |                  |                                |  |  |
| 184        |                                                                                                       | T(K)                          | $R_{ct}(\Omega)$      | Error (%)        | $\ln(R_{ct}^{-1}/\Omega^{-1})$ |  |  |
| 185<br>186 |                                                                                                       | 303                           | 469.6                 | 1.56             | -6.16                          |  |  |
| 180        |                                                                                                       | 313                           | 333.6                 | 2.09             | -5.81                          |  |  |
| 188        |                                                                                                       | 323                           | 199.9                 | 2.15             | -5.29                          |  |  |
| 189        |                                                                                                       |                               | 105.4                 |                  | 4.01                           |  |  |
| 190        |                                                                                                       | 333                           | 135.4                 | 2.23             | -4.91                          |  |  |
| 191<br>192 |                                                                                                       |                               |                       |                  |                                |  |  |
| 193        | The formula o                                                                                         | f the Arrhenius of            | equation is expres    | sed as follows:  |                                |  |  |
| 194        | $\frac{1}{R_{ct}} = Aexp(-\frac{E_a}{RT})$                                                            |                               |                       |                  |                                |  |  |
| 195        | where $R_{ct}$ is the charge-transfer resistance, and A, T, R, and E <sub>a</sub> represent the pre-e |                               |                       |                  |                                |  |  |
| 196        | absolute temperatur                                                                                   | re, ideal gas con             | stant, and activation | on energy, respe | ectively.                      |  |  |

**Table S1.** Fitting parameters of Nyquist plots.

factor,

**Table S2.** Fitting parameters of Nyquist plots.

| With [BMIM]PF <sub>6</sub>    |                    |                                |  |  |  |  |  |  |
|-------------------------------|--------------------|--------------------------------|--|--|--|--|--|--|
|                               | $R_{S}(\Omega)$    | $R_{ct}(\Omega)$               |  |  |  |  |  |  |
| Pristine                      | 1.42 / 1.44 / 1.46 | 409.19 / 471.17 / 495.32       |  |  |  |  |  |  |
| 10 th                         | 1.58 / 1.59 / 1.54 | 55.49 / 62.95 / 74.47          |  |  |  |  |  |  |
| 20 th                         | 1.75 / 1.77 / 1.82 | 24.65 / 32.39 / 57.14          |  |  |  |  |  |  |
| 30 th                         | 1.63 /1.67 / 1.65  | 25.36 / 30.35 / 43.26          |  |  |  |  |  |  |
| Without [BMIM]PF <sub>6</sub> |                    |                                |  |  |  |  |  |  |
|                               | $R_{S}(\Omega)$    | $R_{ct}(\Omega)$               |  |  |  |  |  |  |
| Pristine                      | 1.49 / 1.52 / 1.50 | 1163.69 / 1181.13 /<br>1208.49 |  |  |  |  |  |  |
| 10 th                         | 1.74 / 1.77 / 1.79 | 488.49 / 567.05 / 592.21       |  |  |  |  |  |  |
| 20 th                         | 1.92 / 1.93 / 1.91 | 468.21 / 472.59 / 475.05       |  |  |  |  |  |  |
| 30 th                         | 1.85 / 1.88 / 1.84 | 389.56 / 393.26 /396.34        |  |  |  |  |  |  |

| 204 invo     | olving electrolyte additives                                                                     | s and our work.                                                                                                                                                   |                      |                                                       | -                                          |                                                             |               |
|--------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------------------------------------------|--------------------------------------------|-------------------------------------------------------------|---------------|
| No.          | Electrolyte component                                                                            | Current<br>density/capacity<br>(Zn//Zn)                                                                                                                           | Life (h)             | Current<br>density/capacity<br>(Zn//Cu)               | Coulombic<br>efficiency<br>(%)             | Max cumulative<br>capacity plated<br>(Ah cm <sup>-2</sup> ) | Ref           |
| 1            | 2 M ZnSO <sub>4</sub> +<br>0.08 M ZnF <sub>2</sub>                                               | 1 mA cm <sup>-2</sup> /1 mAh cm <sup>-2</sup>                                                                                                                     | 600                  | 1 mA cm <sup>-2</sup> /<br>1 mAh cm <sup>-2</sup>     | 99.6<br>(1000cycles)                       | 3.2                                                         | 4             |
| 2            | 1 M ZnSO <sub>4</sub> +<br>4 M EMImCL                                                            | 1mA cm <sup>-2</sup> /1 mAh cm <sup>-2</sup>                                                                                                                      | 500                  | 1 mA cm <sup>-2</sup> /<br>1 mAh cm <sup>-2</sup>     | 99.9<br>(90cycles)                         | 0.25                                                        | 5             |
| 3            | 2 M ZnSO4 in<br>glycerol/water (50/50)                                                           | 1 mA cm <sup>-2</sup> /1 mAh cm <sup>-2</sup> ,<br>2 mA cm <sup>-2</sup> /6 mAh cm <sup>-2</sup>                                                                  | 1500,<br>900         | 1 mA cm <sup>-2</sup> /<br>1 mAh cm <sup>-2</sup>     | 98.3<br>(500cycles)                        | 0.9                                                         | 6             |
| 4            | 1 M ZnSO <sub>4</sub> +<br>75 mM Na4EDTA                                                         | 2 mA cm <sup>-2</sup> /2 mAh cm <sup>-2</sup> ,<br>5 mA cm <sup>-2</sup> /2 mAh cm <sup>-2</sup>                                                                  | 450,<br>2000         | 0.5 mA cm <sup>-2</sup> /<br>0.5 mAh cm <sup>-2</sup> | 98.3<br>(300cycles)                        | 5                                                           | 7             |
| 5            | 1 M ZnSO4 +<br>0.1 M MgSO4                                                                       | 1mA cm <sup>-2</sup> /0.25 mAh<br>cm <sup>-2</sup>                                                                                                                | 600                  | 2 mA cm <sup>-2</sup> /<br>0.5 mAh cm <sup>-2</sup>   | expands to 400<br>h with about<br>100 C.E. | 0.3                                                         | 8             |
| 6            | 1 M ZnSO <sub>4</sub> +<br>0.01 M Ce <sub>2</sub> (SO <sub>4</sub> ) <sub>3</sub>                | 1 mA cm <sup>-2</sup> /1 mAh cm <sup>-2</sup> ,<br>5 mA cm <sup>-2</sup> /1 mAh cm <sup>-2</sup>                                                                  | 400,<br>700          | 1 mA cm <sup>-2</sup> /<br>1 mAh cm <sup>-2</sup>     | 97.0<br>(2000cycles)                       | 1.75                                                        | 9             |
| 7            | 2 M ZnSO <sub>4</sub> +<br>1 vol% DME                                                            | $2 \text{ mA cm}^{-2}/2 \text{ mAh cm}^{-2}$                                                                                                                      | 380                  | 1 mA cm <sup>-2</sup> /<br>0.4 mAh cm <sup>-2</sup>   | 99.1<br>(200cycles)                        | 0.38                                                        | 10            |
| 8            | 2 M ZnSO <sub>4</sub> +<br>0.05mg mL <sup>-1</sup> Ti <sub>3</sub> C <sub>2</sub> T <sub>x</sub> | 2 mA cm <sup>-2</sup> /1 mAh cm <sup>-2</sup> ,<br>4 mA cm <sup>-2</sup> /5 mAh cm <sup>-2</sup>                                                                  | 1180,<br>250         | 1 mA cm <sup>-2</sup> /<br>1 mAh cm <sup>-2</sup>     | 98.6<br>(100cycles)                        | 1.18                                                        | 11            |
| 9            | 2 M ZnSO <sub>4</sub> +<br>0.5 g L <sup>-1</sup> TMBAC                                           | $\frac{2 \text{ mA cm}^{-2}/2 \text{ mAh cm}^{-2}}{10 \text{ mA cm}^{-2}/5 \text{ mAh cm}^{-2}}$                                                                  | 900,<br>470          | 0.5 mA cm <sup>-2</sup> /<br>1 mAh cm <sup>-2</sup>   | 99.0<br>(200cycles)                        | 2.35                                                        | 12            |
| 10           | 7.6 mM ZnCl <sub>2</sub> +<br>0.05 mM SnCl <sub>2</sub>                                          | $3 \text{ mA cm}^{-2}/3 \text{ mAh cm}^{-2}$                                                                                                                      | 500                  | 0.5 mA cm <sup>-2</sup> /<br>0.5 mAh cm <sup>-2</sup> | 99.7<br>(200cycles)                        | 0.75                                                        | 13            |
| 11           | 4 M Zn(TFSI) <sub>2</sub> +<br>4 M P444(201)-TFSI                                                | 0.5 mA cm <sup>-2</sup> /0.5 mAh<br>cm <sup>-2</sup> ,<br>1 mA cm <sup>-2</sup> /1 mAh cm <sup>-2</sup> ,<br>2.5 mA cm <sup>-2</sup> /2.5 mAh<br>cm <sup>-2</sup> | 6000,<br>800,<br>280 | 0.5 mA cm <sup>-2</sup> /<br>5 mAh cm <sup>-2</sup>   | >99<br>(16cycles)                          | 1.5                                                         | 14            |
| 12           | 1 M Zn(TFSI) <sub>2</sub> +<br>0.25 M Ace                                                        | 1 mA cm <sup>-2</sup> /0.5 mAh<br>cm <sup>-2</sup>                                                                                                                | 100                  | 0.5 mA cm <sup>-2</sup> /<br>0.5 mAh cm <sup>-2</sup> | 98<br>(10cycles)                           | 1                                                           | 15            |
| 13           | 1 M ZnSO4 +0.25PA                                                                                | $5 \text{ mA cm}^{-2}/1 \text{ mAh cm}^{-2}$                                                                                                                      | 400                  | /                                                     | /                                          | /                                                           | 16            |
| 14           | 1 M ZnSO <sub>4</sub> +10% TG                                                                    | 2 mA cm <sup>-2</sup> /0.67 mAh<br>cm <sup>-2</sup>                                                                                                               | 670                  | 2 mA cm <sup>-2</sup> /<br>1 mAh cm <sup>-2</sup>     | 99.49<br>(300cycles)                       | /                                                           | 17            |
| This<br>work | 2 M ZnSO4 +<br>1 % [BMIM]PF <sub>6</sub>                                                         | 1 mA cm <sup>-2</sup> /1 mAh cm <sup>-2</sup> ,<br>4 mA cm <sup>-2</sup> /0.5 mAh<br>cm <sup>-2</sup> ,<br>4 mA cm <sup>-2</sup> /4 mAh cm <sup>-2</sup>          | 800,<br>1000,<br>400 | 1 mA cm <sup>-2</sup> /<br>1 mAh cm <sup>-2</sup>     | 99.7<br>(500cycles)                        | 2.31                                                        | Thi<br>s work |

Table S3. Performance comparison of symmetric Zn//Zn cells from the previously reported works 203

205

#### 207 3. References

- 208 1. H. Sun, J. Phys. Chem. B, 1998, **102**, 7338-7364.
- 209 2. H. Sun, P. Ren, J.R. Fried, Comput. Theor. Polym. Sci., 1998, 8, 229-246.
- 210 3. O. Borodin, M. Olguin, P. Ganesh, P.R.C. Kent, J.L. Allen, W.A. Henderson, Phys. Chem. Chem. Phys., 2016, 18, 164-
- 211 175.
- 4. Y. An, Y. Tian, K. Zhang, Y. Liu, C. Liu, S. Xiong, J. Feng, Y. Qian, Adv. Funct. Mater., 2021, **31**, 2101886.
- 213 5. Q. Zhang, Y. Ma, Y. Lu, L. Li, F. Wan, K. Zhang, J. Chen, Nat. Commun., 2020, 11, 4463.
- Y. Zhang, M. Zhu, K. Wu, F. Yu, G. Wang, G. Xu, M. Wu, H.-K. Liu, S.-X. Dou, C. Wu, J. Mater. Chem. A, 2021, 9, 4253-4261.
- 216
  7. S.-J. Zhang, J. Hao, D. Luo, P.-F. Zhang, B. Zhang, K. Davey, Z. Lin, S.-Z. Qiao, Adv. Energy Mater., 2021, 11,
  217
  2102010.
- 218 8. P. Wang, X. Xie, Z. Xing, X. Chen, G. Fang, B. Lu, J. Zhou, S. Liang, H.J. Fan, Adv. Energy Mater., 2021, **11**, 2101158.
- K.A. Owusu, X. Pan, R. Yu, L. Qu, Z. Liu, Z. Wang, M. Tahir, W.A. Haider, L. Zhou, L. Mai, Mater. Today Energy,
   2020, 18, 100529.
- 10. H. Huang, D. Xie, J. Zhao, P. Rao, W.M. Choi, K. Davey, J. Mao, Adv. Energy Mater., 2022, 12, 2202419.
- 11. J. Cao, D. Zhang, C. Gu, X. Wang, S. Wang, X. Zhang, J. Qin, Z.-S. Wu, Adv. Energy Mater., 2021, 11, 2101299.
- 12. K. Guan, L. Tao, R. Yang, H. Zhang, N. Wang, H. Wan, J. Cui, J. Zhang, H. Wang, H. Wang, Adv. Energy Mater.,
  224 2022, 12, 2103557.
- L. Cao, D. Li, F.A. Soto, V. Ponce, B. Zhang, L. Ma, T. Deng, J.M. Seminario, E. Hu, X.-Q. Yang, P.B. Balbuena, C.
  Wang, Angew. Chem. Int. Ed., 2021, 60, 18845-18851.
- L. Ma, T.P. Pollard, Y. Zhang, M.A. Schroeder, M.S. Ding, A.V. Cresce, R. Sun, D.R. Baker, B.A. Helms, E.J. Maginn,
  C. Wang, O. Borodin, K. Xu, Angew. Chem. Int. Ed., 2021, 60, 12438-12445.
- 229 15. H. Qiu, X. Du, J. Zhao, Y. Wang, J. Ju, Z. Chen, Z. Hu, D. Yan, X. Zhou, G. Cui, Nat. Commun., 2019, 10.

- 230 16. Y. Chen, F. Gong, W. Deng, H. Zhang, X. Wang, Energy Storage Mater., 2023, 58, 20-29.
- 231 17. Z. Liu, R. Wang, Q. Ma, J. Wan, S. Zhang, L. Zhang, H. Li, Q. Luo, J. Wu, T. Zhou, J. Mao, L. Zhang, C. Zhang, Z.
- 232 Guo, Adv. Funct. Mater., 2024, **34**, 2214538.