Electronic Supplementary Information

Sb₄O₅Cl₂ Embedded in Carbon Polyhedra For Fast Charge Kinetics Towards

High-Capacity Lithium-ion Capacitors

Meng Wang,^{ab} Kewei Liu,^{ac} Yanan Xu,^{ac} Xudong Zhang,^{ac} Qifan Peng,^a Yang Guo,^a Xiong Zhang,^{ac} Xianzhong Sun,^{ac} Weiwei Pang,^{*e} Kai Wang,^{*ac} Le Yu,^{*b} Yanwei Ma^{*acd}

^aInstitute of Electrical Engineering, Chinese Academy of Sciences

Beijing 100190, P. R. China

E-mail: wangkai@mail.iee.ac.cn; ywma@mail.iee.ac.cn

^bState Key Lab of Organic-Inorganic Composites, Beijing University of Chemical Technology,

Beijing, 100029, P. R. China

E-mail: yule@mail.buct.edu.cn

^cSchool of Engineering Sciences, University of Chinese Academy of Sciences

Beijing 100049, P. R. China

^dSchool of Materials Science and Engineering, Zhengzhou University

Zhengzhou 450001, P. R. China

^ePetrochemical Research Institute, PetroChina Company Limited, Beijing 102206, P. R. China

E-mail: pangweiwei@petrochina.com.cn

Fig. S1 Field-emission scanning electron microscopy (FESEM) image of Sb₄O₅Cl₂.

Fig. S2 Transmission electron microscopy and the corresponding elemental mapping images of $Sb_4O_5Cl_2@ZCP$.

Fig. S3 X-ray diffraction (XRD) patterns of (a) ZIF-8 and (b) ZCP.

Fig. S4 (a) C 1s XPS spectrum, (b) Sb 3d XPS spectrum, and (c) Cl 2p XPS spectrum of $Sb_4O_5Cl_2@ZCP$.

Fig. S5 C 1s XPS spectrum of ZCP.

Fig. S6 (a) N_2 adsorption-desorption isotherms, and (b) pore size distribution curve of $Sb_4O_5Cl_2@ZCP$.

Fig. S7 Thermogravimetry curves of (a) Sb₄O₅Cl₂@ZCP in air and (b) ZCP in N₂.

Fig. S8 Galvanostatic charge-discharge (GCD) profiles of the initial 3 cycles at 0.1 A g^{-1} for $Sb_4O_5Cl_2@ZCP$.

Fig. S9 FESEM images of (a,c) Sb₄O₅Cl₂ and (b,d) Sb₄O₅Cl₂@ZCP anodes (a,b) before and (c,d) after cycling.

Fig. S10 XRD pattern of Sb₄O₅Cl₂@ZCP after cycling.

Fig. S11 Nyquist plots of $Sb_4O_5Cl_2@ZCP$ and $Sb_4O_5Cl_2$ electrodes.

Fig. S12 GCD profiles of the Sb₄O₅Cl₂@ZCP after long-term cycling.

Fig. S13 Cycling performance of Sb₄O₅Cl₂@ZCP.

Fig. S14 Rate performance of Sb/C and Sb₄O₅Cl₂@ZCPs using different amounts of SbCl₃.

Fig. S15 Sb1-O and Sb2-O coordination bonds in Sb₄O₅Cl₂.

Fig. S16 Li⁺ migration paths in the surfaces of (a) $Sb_4O_5Cl_2$ and (b) ZCP.

Fig. S17 FESEM images of (a) Sb₃O₂F₅@ZCP and (b) SbOBr@ZCP.

Fig. S18 XPS spectra of (a) $Sb_3O_2F_5@ZCP$ and (b) SbOBr@ZCP.

Fig. S19 XRD patterns of (a) Sb₃O₂F₅@ZCP, and (b) SbOBr@ZCP.

Fig. S20 Electron density differences of Sb₄O₅Br₂.

Fig. S21 Li^+ migration paths in the interlayers of (a) $Sb_4O_5Cl_2$, (b) $Sb_3O_2F_5$ and (c) $Sb_4O_5Br_2$.

Fig. S22 FESEM image and XRD pattern of YP-80F.

Fig. S23 (a) Cycling performance and (b) CV curves of YP-80F cathode.

Fig. S24 Rate performance of different mass ratios of cathode and anode in a LIC device.

Sample	Atomic concentration (at.%)				
-	С	0	Zn	Sb	
ZCP	79.43	15.97	4.59	/	
Sb ₄ O ₅ Cl ₂ @ZCP	40.51	49.5	2.8	7.19	

Table S1 Elemental contents in ZCP and Sb₄O₅Cl₂@ZCP determined by XPS.

 Table S2 ICP results of Sb₄O₅Cl₂@ZCP sample.

Sample	Sb (wt%)	Zn (wt%)
Sb ₄ O ₅ Cl ₂ @ZCP	9.4	3.65

Anode	Performance	Ref.
Sb ₄ O ₅ Cl ₂ @ZCP	601.1 mAh g ⁻¹ at 0.5 A g ⁻¹ after 600 cycles	This work
BiSbSe ₃	428 mAh g ⁻¹ at 0.1 A g ⁻¹ after 100 cycles	1
Sb@Ni ₃ (HHTP) ₂ -10	590 mAh g ⁻¹ at 0.1 A g ⁻¹ after 100 cycles	2
Sb nanoflakes	300 mAh g ⁻¹ at 0.5 A g ⁻¹ after 80 cycles	3
SS/H@C	624.5 mAh g ⁻¹ at 10 A g ⁻¹ after 100 cycles	4
YS-SbC	584 mAh g ⁻¹ at 0.2 A g ⁻¹ after 100 cycles	5
Sb ₃₀ P ₃₀	807 mAh g ⁻¹ at 5 A g ⁻¹ after 200 cycles	6
SnSb@CNF/CFT	208 mAh g ⁻¹ at 0.5 A g ⁻¹ after 700 cycles	7
Sb@B_MX_HF5 (6:4)	434 mAh g ⁻¹ at 0.1 A g ⁻¹ after 100 cycles	8
NC@SnSb@NC	598 mAh g ⁻¹ at 0.5 A g ⁻¹ after 100 cycles	9
SZS-Sisal	638 mAh g ⁻¹ at 0.5 A g ⁻¹ after 100 cycles	10
Sb ₂ S ₃ @C	450 mAh g ⁻¹ at 0.5 A g ⁻¹ after 70 cycles	11
Co-Sb-S@NC	884.9 mAh g ⁻¹ at 1 A g ⁻¹ after 400 cycles	12

Table S3 Comparison table of $Sb_4O_5Cl_2@ZCP$ with other Sb-based anodes.

Supplementary References

- 1. W.-C. Lin, Y.-C. Yang and H.-Y. Tuan, *Energy Storage Mater.*, 2022, **51**, 38-53.
- 2. A. Nazir, H. T. T. Le, A.-G. Nguyen, J. Kim and C.-J. Park, *Chem. Eng. J.*, 2022, **450**, 138408.
- 3. R. Shao, Z. Sun, L. Wang, J. Pan, L. Yi, Y. Zhang, J. Han, Z. Yao, J. Li, Z. Wen, S. Chen, S. Chou, D.-L. Peng and Q. Zhang, *Angew. Chem., Int. Ed.*, 2024, **63**, e202320183.
- 4. W. Zhao, S. Yuan, S. Lei, Z. Zeng, J. Dong, F. Jiang, Y. Yang, W. Sun, X. Ji and P. Ge, *Adv. Funct. Mater.*, 2022, **33**, 2211542.
- X. Yang, Y. Zhu, D. Wu, M. Li, Y. He, L. Huang and M. Gu, *Adv. Funct. Mater.*, 2022, 32, 2111391.
- 6. Y. Wei, J. He, J. Zhang, M. Ou, Y. Guo, J. Chen, C. Zeng, J. Xu, J. Han, T. Zhai and H. Li, *Energy Environ. Mater.*, 2022, **6**, e12336.
- 7. Z. Song, G. Wang, Y. Chen, Y. Lu and Z. Wen, *Chem. Eng. J.*, 2023, **463**, 142289.
- S. Arnold, A. Gentile, Y. Li, Q. Wang, S. Marchionna, R. Ruffo and V. Presser, *J. Mater. Chem. A*, 2022, 10, 10569-10585.
- X. Shi, W. Liu, D. Zhang, C. Wang, J. Zhao, X. Wang, B. Chen, L. Chang, Y. Cheng and L. Wang, *Chem. Eng. J.*, 2022, **431**, 134318.
- 10. H. Qin, B. Zhang, C. Wang, D. Wang and X. Ou, *Energy Storage Mater.*, 2022, **52**, 189-200.
- H. Ye, Z. Wang, J. Yan, Z. Wang, J. Chen, Q. Dai, Y. Su, B. Guo, H. Li, L. Geng, C. Du, J. Wang, Y. Tang, L. Zhang, L. Zhu and J. Huang, *Adv. Funct. Mater.*, 2022, **32**, 2204231.
- T. Yan, F. Wen, J. Duan, C. Zhu, J. Wen, Y. Wang, J. Tong and Z. Chen, *Chem. Eng. J.*, 2023, 474, 145839.