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Experimental section

Materials: Sodium Tungstate Dihydrate (Na2WO4·2H2O), Nickel foam (NF), 

Ammonium sulfate ((NH4)2SO4), Nickel sulfate (NiSO4), Sodium sulfate (Na2SO4), 

anhydrous ethanol (C2H6O), ammonium chloride (NH4Cl), sodium hydroxide (NaOH), 

salicylic acid (C7H6O3), sodium citrate dihydrate (C6H5Na3O7·2H2O), p–

dimethylamino benzaldehyde (C9H11NO), and sodium nitroferricyanide dihydrate 

(C5FeN6Na2O·2H2O) were purchased from Chengdu Kelong Ltd. 

Preparation of WO3/NF: Typically, 0.184 g of Na2WO4·2H2O and 0.3 g of 

(NH4)2SO4 were dissolved in 15 mL of deionized water, respectively, and then mixed 

with slow stirring for one hour. Finally, the product was transferred to a 50 ml sealed 

Teflon-lined stainless steel autoclave. Subsequently, The Nickel foam (NF) was 

ultrasonically cleaned with acetone, ethanol, and deionized water for 10 min and dried 

in air. And, the cleaned NF was placed in the solution in the autoclave. Then the 

autoclave was kept at 160 °C for 16 h. After the autoclave cooled down at room 

temperature, the NF was taken out and washed with water and ethanol several times 

and subsequently dried at 60 ºC overnight. 

Preparation of WO2/NF: The precursor WO3/NF was put into a tubular furnace, and 

argon hydrogen atmosphere was injected into the furnace for 30 minutes, the heating 

rate was 5 ℃/min, and the heat preservation was held at 650 ℃ for 0.5 h.

Preparation of Ni@WO2/NF: WO2/NF electrodes were electroplated with 0.13 M 

NiSO4, 0.13 M Na2SO4, and 0.1 M C6H5Na3O7·2H2O at a current density of 10 mA 

cm−2 and plating time of 180 s.

Characterizations: The crystal structure of the prepared material was determined 

Supplementary Information (SI) for Journal of Materials Chemistry A.
This journal is © The Royal Society of Chemistry 2024



S2

using an X-ray diffractometer with Cu Kα radiation (DX-2700B). microstructural 

observations were performed on a field−emission scanning electron microscopy (FEI 

Insect F50) and an atomic resolution scanning transmission electron microscopy (FEI 

Talos F200S Super). XPS measurements were carried out with Thermo Fischer 

ESCALAB Xi+. The absorbance data were measured via an Ultraviolet-visible (UV–

Vis) spectrophotometer (Shimazu UV–2600). EPR spectrum was recorded on a 

Brüker EMX spectrometer at room temperature.

Electrochemical measurements: All electrochemical measurements were carried 

out in an H−shaped cell separated by a Nafion 117 membrane using a CHI 

760E electrochemical workstation (Chenhua, Shanghai). The area of the 

working electrode immersed in the electrolyte is 0.25 cm2. LSV was performed 

in Ar−saturated 0.1 M NaOH with 0.1 M NaNO2 at a scan rate of 5 mV s−1. All 

potentials reported in this work were converted to a reversible hydrogen 

electrode (RHE) scale, and current densities were normalized to the geometric 

surface area. All experiments were carried out at room temperature (25 °C).

Determination of NH3: The NH3 concentration in the electrolyte was determined (the 

obtained electrolyte was diluted 50 times) by the indophenol blue method. 

Specifically, 2 mL of electrolyte collected after electrolysis was mixed with 2 mL of 

coloring solution (1 M NaOH containing 5% salicylic acid and 5% sodium citrate), 

and 1 mL of oxidizing solution (0.05 M NaClO). Then 0.2 mL oxidation solution 

(0.05 M NaClO) mL catalyst solution (1 wt% C5FeN6Na2O 2H2O) was dropped into 

the collected solution. After standing in the dark for 2 h, the concentration of NH3 was 

determined by UV-Vis at a specific wavelength of 655 nm. The 

concentration−absorbance curve was calibrated using the standard NH4Cl solution 
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with known concentrations of 0.0, 0.25, 0.5, 1.0, 1.5, 2.0, and 2.5 μg mL–1 in 0.1 M 

NaOH. The fitting curve (y = 0.41927x + 0.02789, R2 = 0.9998) shows a good linear 

relation of absorbance value with NH3 concentration.

Determination of NH3 yield and FE:

The NH3 FE is estimated from the charge consumed for NO2
– reduction and the total 

charge passed through the electrode:

FE = 6 × F × V × [NH3] / (Q × 17) × 100%

The yield rate of NH3 (aq) is calculated:

NH3 yield = V × [NH3] / (A × t × 17)

Where [NH3] is the concentration of NH3 (aq), F is the Faradaic constant (96485 C 

mol–1), V is the volume of electrolyte in the anode compartment (45 mL), Q is the 

total charge passing the electrode, t is the electrolysis time, and A is the geometric 

surface area.
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Fig. S1. 120 ℃ for 8 h SEM images of WO3/NF.
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Fig. S2. 140 ℃ for 8 h SEM images of WO3/NF.
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Fig. S3. 160 ℃ for 8 h SEM images of WO3/NF.
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Fig. S4. 180 ℃ for 8 h SEM images of WO3/NF.
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Fig. S5. 160 ℃ for 16 h XRD pattern of WO3/NF.
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Fig. S6. XRD pattern of WO2/NF at different calcination temperatures.
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Fig. S7. LSV curves of WO2/NF at different temperatures.
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Fig. S8. (a) LSV curves of Ni@WO2/NF at different electrodeposition current densities.(b) 

Press the LSV curve of Ni@WO2/NF for different electrodeposition times.
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Fig. S9. (a) UV−Vis spectra and (b) corresponding calibration curves were used to calculate NH4
+.
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Fig. S10. (a) Chronoamperometry curves and (b) corresponding UV-Vis spectra of Ni@WO2/NF 

from −0.1 V to −0.5 V.
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Fig. S11. CV curves of WO2/NF (a), Ni@WO2/NF (b) at different scan rates (20−100 mV s-1). 

(c)The double−layer capacitance (Cdl) for Ni@WO2/NF, and WO2/NF, respectively. Cdl is 

proportional to the electrochemical surface area (ECSA).
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Fig. S12. ECSA−normalized current densities of Ni@WO2/NF and WO2/NF.
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Fig. S13. Electrochemical impedance spectroscopy (EIS) for Ni@WO2/NF, and WO2/NF, 

respectively.
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Fig. S14. (a) UV−Vis spectra and (b) amounts of electrogenerated NH3 under different operating 

conditions.
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Fig. S15. UV-absorbable spectra of Ni@WO2/NF are tested alternately in a 0.1 M NaOH 

electrolyte with and without NaNO2 and without NaNO2.
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Fig. S16. (a) Chronoamperometry curves and (b) corresponding UV−Vis absorption spectra of 

Ni@WO2/NF for electrochemical catalytic production of NH3 during cycling tests in 0.1 M NaOH 

with 0.1 M NO2
− at −0.4V. 
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Fig. S17. XRD of Ni@WO2/NF after long electrolysis.
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Fig. S18. SEM images of Ni@WO2/NF after long-term electrolysis.
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Fig. S19. EIS before and after stability test.
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Table S1. Comparison of catalytic performance of Ni@WO2/NF with other reported NO2
–RR 

electrocatalysts.

Catalyst Electrolyte FE (%) NH3 yield rate Refs.

Ni@WO2/NF
0.1 M NaOH

(0.1 M NaNO2)
94.6

17959.3 μg h–1 cm–2

(1056.43 μmol cm–2) This work

Ag@NiO 0.1 M NaOH
(0.1 M NaNO2)

97.7 5751 μg h–1 cm–2 1

C-NiWO4
0.1 M NaOH

(0.1 M NaNO2)
97.6 10974.36 μg h–1 cm–2 2

Ag@TiO2
0.1 M NaOH

(0.1 M NaNO2)
96.4 8743.1 μg h–1 cm–2 3

Ni@TiO2
0.1 M NaOH

(0.1 M NaNO2)
98.5 9667.9 μg h–1 cm–2 4

NiS2@TiO2
0.1 M NaOH

(0.1 M NaNO2)
92.1 10062.3 μg h–1 cm–2 5

Ni-TiO2
0.1 M NaOH

(0.1 M NaNO2)
94.9 6464.6 μg h–1 cm–2 6

Cu/JDC
0.1 M NaOH

(0.1 M NaNO2)
93.2 8899.5 μg h–1 cm–2 7

V-TiO2
0.1 M NaOH

(0.1 M NaNO2)
93.2 7083.9 μg h–1 cm–2 8

A-TiO2x
0.1 M NaOH

(0.1 M NaNO2)
91.1 12230.1 μg h–1 cm–2 9

WO2
0.1 M NaOH

(0.1 M NaNO2)
94.3 14964.25 μg h–1 cm–2 10

FEOOH NTA
0.1 M NaOH

(0.1 M NaNO2)
94.7 11937 μg h–1 cm–2 11

Ni−NSA−VNi
0.2 M Na2SO4

(200 ppm NO2
–)

88.9 235.98 μmol h–1 cm–2 12

Cobalt-tripeptide 
complex

1.0 M MOPS buffer
(1.0 M NaNO2)

90±3 3.01 × 10–10 mol s–1 cm-2 13

Poly-NiTRP 
complex

NaNO2

(0.1 M NaClO4)
― 1.1 mM 14

FeN5H2
1.0 M MOPS

(1.0 M NaNO2)
> 90 ― 15

Cu3P NA/CF
0.1 M PBS

(0.1 M NaNO2)
91.2 ± 2.5 1626.6 μg h–1 cm–2 16



S24

Table S2. Comparison of NH3 yield and power density of our battery with recent Zn-N2, Zn-NO, Zn-

NO2
−, or Zn-NO3

− battery systems.

Catalyst Battery Type
Power density

(mW cm-2)
Refs.

Ni@WO2/NF Zn-NO2
− 9.05 This work

Cu NDs Zn-N2 0.0101 17

FeHTNs Zn-N2 0.01642 18

VN@NSC Zn-N2 0.01642 19

CoPi/HSNPC Zn-N2 0.31 20

NbS2 Zn-N2 0.31 21

CoPi/NPCS Zn-N2 0.49 22

Ti2O3 Zn-N2 1.02 23

FePS3 Zn-N2 2.6 24

CoP Zn-NO 0.496 25

NiO Zn-NO 0.88 26

MoS2 Zn-NO 1.04 27

Fe2O3 Zn-NO 1.18 28

Ni2P Zn-NO 1.53 29

TiO2@Ti Zn-NO 1.7 30

MoC Zn-NO 1.8 31

VN Zn-NO 2.0 32

CoS Zn-NO 2.06 33

BiNDs Zn-NO 2.33 34

Bi@C Zn-NO 2.35 35

ITO@TiO2TP  Zn-NO2
- 1.22 36

A-TiO2-x  Zn-NO2
- 2.38 37

TiO2  Zn-NO3
- 0.87 38

Fe/Ni2P  Zn-NO3
- 3.25 39

Co2AlO4  Zn-NO3
- 3.43 40

CeO2  Zn-NO3
- 3.44 41

NiCo2O4  Zn-NO3
- 3.94 42
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