Supporting Information

Depolymerization of Lignin Disassembly into Cycloalkanes over Hydrotalcitederived NiFe Alloy Catalyst

Hairui Jiao^b, Yushuai Sang^c, Hong Chen^{a,*}, Yongdan Li^{c,*}

^a School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China

^b Collaborative Innovation Center of Chemical Science and Engineering, Tianjin Key Laboratory of Applied Catalysis Science and Technology, State Key Laboratory of Chemical Engineering, School of Chemical Engineering, Tianjin University, Tianjin 300072, China

^c Department of Chemical and Metallurgical Engineering, School of Chemical Engineering, Aalto University, Kemistintie 1, Espoo FI-00076, Finland

^{*} Corresponding author. E-mail address: chenhong_0405@tju.edu.cn (H. Chen), yongdan.li@aalto.fi (Y. Li).

Table S1. PPE conversion (%) of $Ni_9Fe_1/NiAlO_z$ with different solvents and with or without H_2 .

Reaction conditions: 500 mg catalyst,	500 mg PPE,	70 mL solvent,	100 °C, 3 h, with
(0.8 MPa) or without H_2 pressure.			

Solvent	H ₂ O	Methanol	Ethanol	Isopropanol	n-Dodecane
With H ₂	8.5	10.1	19.8	33.4	99.8
Without H ₂	-	-	-	-	-

Samples	Shell	CN	<i>R</i> (Å)	σ^2 (Å ⁻²)	$\Delta E_0 (eV)$	R factor
Ni foil	Ni-Ni	12	2.5	0.006	6.3 (0.6)	0.003
NiO	Ni-O	6.1 (0.3)	2.1	0.009	24(11)	0.007
NiO	Ni-Ni	11.9 (0.4)	3.0	0.008	-2.4 (1.1)	0.006
	Ni-O	6	2.1	0.010		
Ni ₉ Fe ₁ /NiAlO _z	Ni-M ₁	12	2.6	0.015	2.4 (2.5)	0.01
	Ni-M ₂	12	3.0	0.014		

Table S2. EXAFS fitting parameters at the Ni K-edge for various samples.

CN, coordination number; *R*, distance between absorber and backscatter atoms; σ^2 , the Mean Square Relative Displacement (MSRD); ΔE_0 , energy shift interpreted as the alignment of the energy grids of the data and the theory; *R* factor indicates the goodness of the fit.

 S_0^2 was fitted as 0.75 for Ni foil by fixing *CN* as the known crystallographic value. Fitting range of Ni foil is $3.0 \le k$ (Å⁻¹) ≤ 10.5 and $1 \le R$ (Å) ≤ 3 . S_0^2 was fixed as 0.98 for the fitting of NiO. Fitting range of NiO is $3.0 \le k$ (Å⁻¹) ≤ 10 and $1 \le R$ (Å) ≤ 3 . S_0^2 was fixed as 0.80 for the fitting of Ni₉Fe₁/NiAlO_z. Fitting range of Ni₉Fe₁/NiAlO_z is $3.0 \le k$ (Å⁻¹) ≤ 10.4 and $1 \le R$ (Å) ≤ 3 .

Samples	Shell	CN	$R(\text{\AA})$	$\sigma^2(\text{\AA}^{-2})$	$\Delta E_0(\text{eV})$	R factor
Fe foil	Fe-Fe	12	2.5	0.0078	5.8 (2.8)	0.005
	Fe-O ₁	4.2 (1.7)	2.0	0.010		
	Fe-O ₂	1.8	2.2			
	Fe-Fe ₁	3	3.0			
Fe ₂ O ₃	Fe-Fe ₂	1	2.9	0.005	-1.3 (2.4)	0.004
	Fe-Fe ₃	2	3.4			
	Fe-Fe ₄	6	3.7	0.010		
	Fe-O ₃	3	3.9	0.006		
Ni ₉ Fe ₁ /NiAlO _z	Fe-O ₁	5.4 (0.7)	2.0	0.014		
	Fe-M ₁	6.0 (1.3)	2.6	0.023	1.5 (1.2)	0.007
	Fe-M ₂	5.8 (1.8)	3.0	0.013		0.007
	Fe-O ₂	4	3.3	0.028		

Table S3. EXAFS fitting parameters at the Fe K-edge for various samples.

 S_0^2 was fitted as 0.75 for Fe foil by fixing *CN* as the known crystallographic value. Fitting range of Fe foil is $3.0 \le k$ (Å⁻¹) ≤ 11.9 and $1 \le R$ (Å) $\le 3. S_0^2$ was fixed as 1.00 for the fitting of Fe₂O₃. Fitting range of Fe₂O₃ is $3.0 \le k$ (Å⁻¹) ≤ 10 and $1 \le R$ (Å) $\le 3.5. S_0^2$ was fixed as 0.85 for the fitting of Ni₉Fe₁/NiAlO_z. Fitting range of Ni₉Fe₁/NiAlO_z is $3.0 \le k$ (Å⁻¹) ≤ 8 and $1 \le R$ (Å) $\le 3.5. S_0^2$ was fixed as 0.85 for the fitting of Ni₉Fe₁/NiAlO_z. Fitting range of Ni₉Fe₁/NiAlO_z is

Catalysts	Subtrate	Reaction condition	Major products and s	electivity	Ref.
Mo ₁ Al/MgO	но мео он оме	200 °C, 4h, 1 MPa N ₂	мео оме но 58	мео но 64%	J. Am. Chem. Soc. 2023, 145, 12884-12893
Ni-Fe/MCS	OH OH	250 °C, 4 h, 5 MPa $\rm H_2$	ОН 49.1%	(49.9%)	Appl. Catal. B-Environ. 2019, 253, 348-358
Br-Ru/SiO ₂		120 °C, 6 h, 0.5 MPa H ₂	сон 44.7%	() 45.6%	Angew. Chem. Int. Ed. 2021, 60, 12513-125233
Ni/Ni-PS		160 °C, 2 h, 1 MPa H ₂) 33.8%	€ 7.6%	Green Chem. 2022, 24, 846-857
NiFe(3)/TiO ₂ - HT	OH OH O	250 °C, 1 h, 5 MPa H ₂	он 71.8%		Chem. Eng. J. 2022, 446 136578
RuRe/H-Beta	OMe OH	250 °C, 10 h, 0 MPa H ₂	26.1%	он С1-С4 43.8%	J. Energy Chem. 2022, 67, 492-49
Ni ₉ Fe ₁ /NiAlO _z		100 °C, 3 h, 0.8 MPa H ₂	ОН 40.5%	56.8%	This work
Mo ₁ Al/MgO	Eucalyptus wood	200 °C, 8 h, 1 MPa N ₂	MeO + OMe +	92%	J. Am. Chem. Soc. 2023, 145, 12884- 12893
RuRe/H-Beta	Alkaline lignin	200 °C, 2 MPa H ₂ , 10 h	, O, HO, OH	54%	J. Energy Chem. 2022, 67, 492-49
Pd/C	Extracted lignin from birch	200 °C, 15 h, 4 MPa $\rm H_2$	Meo H OM H OM	90%	Angew. Chem.Int. Ed. 2018, 57, 1356.
Ru/NbOPO4 ^a	Kraft lignin	310 °C, 40 h, 0.5 MPa $\rm H_2$	099	68%	Chem, 2019, 5, 1521- 1536,
Ni ₉ Fe ₁ /NiAlO _z ^a	Enzymatic hydrolysis lignin	300 °C, 6 h, 3 MPa H ₂	R	100%	This Work
^{<i>a</i>} Breaking the limit	of lignin monomer p	production			

Table S4 The performance comparison of $Ni_9Fe_1/NiAlO_z$ with previously reported catalysts for model compound and lignin depolymerization.

Fig. S1. Product distributions for the conversion of (a) 4-phenylphenol, (b) phenylcyclohexane, (c) bicyclohexyl and (d) cyclohexyloxy-cyclohexane.

Fig. S2. The valence result of Ni (a) and Fe (b).

	Ni ₉ Fe ₁ /NiAlO _z	Ni/NiAlO _z	Fe/AlO _z
0 S			
30 S			
180 S			0

Fig. S3. Color change photographs of the mixtures.

Fig. S4. Lattice stripe calculation for HRTEM.