Supporting information

Buckyball C60/Fe-N4 Superstructured Electrodes for Efficient Oxygen Reduction Reaction

Fancang Meng,^{†,‡} Yinhui Zhang,^{†,‡} Bohong Jiang,[†] Jiahao Li,[†] Huan Wu, $\ddot{\tau}$ Jianwei Zhao, $\ddot{\tau}\dot{\tau}$ Huihui Kong, $\ddot{\tau}$, * Qingmin Ji $\ddot{\tau}$, *

† Herbert Gleiter Institute for Nanoscience, School of Materials Science and Engineering, Nanjing University of Science & Technology, 200 Xiaolingwei, Nanjing, 210094, China

†† Shenzhen Huasuan Technology Co., Ltd.

 \sharp These authors contributed this work equally

* Corresponding author: jiqingmin@njust.edu.cn, konghuihui@njust.edu.cn

Additional experimental information

Characterizations. Scanning electron microscopy (SEM) was performed on FEI Quanta 250FEG field emission scanning electron microscope operating at 15 kV. Transmission electron microscopy (TEM) was operated on a Tecnai G220 at a voltage of 200 kV. Nitrogen sorption measurements were conducted on powder samples at 77K using an Autosorb-1 surface area and pore size analyzer (Gemini VII 2390). The specific surface areas were calculated based on the Brunauer Emmett Teller method (BET). X-ray diffraction (XRD) patterns were measured using a Bruker-AXS D8 Advance diffractometer. Raman spectra were recorded on a scattering Raman spectrometer (Renishaw-invia) using excitation radiation at 514 nm from an $Ar⁺$ ion laser and under the power of 10 mW. Fourier transform infrared (FTIR) spectra were obtained by the FTIR spectrometer Nicolet S10 (Thermo Fisher).

DFT calculations. The spin-polarized density functional theories (DFT) were carried out by using the Vienna Ab initio Simulation Package $(VASP).^{sl}$ The DFT-D3 method is adopted to evaluate the van der Waals (vdW) interaction.^{s4} The Perdew-Burke-Ernzerhof generalized-gradient approximation functional was used to describe the interaction between electrons.⁵³ All-electron plane-wave basis sets with an energy cutoff of 400 eV. The vacuum region was set to be 15 Å to prevent the interaction

between two adjacent surfaces. The convergence threshold was set at $1 \times$ 10^{-5} eV in total energy and 0.02 eV Å⁻¹ in force on each atom.

The reaction Gibbs free energy (ΔG) is defined as :

$$
\Delta G = \Delta E + \Delta E_{ZPE} - T\Delta S \text{ (T=298.15K)},
$$

in which ΔE , the reaction energy, ΔE_{ZPE} , zero-point energies, ΔS , the entropy difference from vibrational frequency calculations. The entropy of gas phase are obtained from the NIST database with standard condition.⁵⁴

References for supporting information

[s1] G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci., 1996, 6, 15-50.

[s2] S. Grimme, Semiempirical GGA-type density functional constructed with a longrange dispersion correction. J. Comput. Chem. 2006, 27 (15), 1787–1799.

[s3] J. P. Perdew, K. Burke, M. Ernzerhof, Generalized Gradient Approximation Made Simple. Phys. Rev. L., 1996, 77(10), 3865-386.

[s4] Computational Chemistry Comparison and Benchmark Database. http://cccbdb.nist.gov/

Additional Data

Figure S1. The SEM images of (a), (b) C_{60} particles by assembly in toluene/DMF mixture, and (c), (d) FePc-C $_{60}$ particles by co-assembly in toluene/DMF mixture.

Figure S2. The HR-TEM images of (a) C_{60} particle and (b) FePc- C_{60} particles.

Figure S3. The XRD patterns of C_{60} , FePc and FePc- C_{60} particles.

Figure S4. (a) The conformation of FePc and the complexation patterns for (b) the coordination of Fe in FePc (Fe@FePc) with pentagon carbon in C_{60} (C@C5-C₆₀), (c) the coordination of Fe@FePc with C-C@C5-C₆₀ and (d) the coordination of N@FePc with C@C5-C₆₀ with the optimal shortest distances based on DFT calculation. Atom color: brown, C; white, H; blue, N; red, Fe.

Figure S5. The complexation pattern by the coordination of C- $C(pyrrole)@FePc$ with $C-C@C5-C_{60}$ with the average shortest distances based on DFT calculation. Atom color: brown, C; white, H; blue, N; red, Fe.

Figure S6. The FTIR spectra of C_{60} particle, FePc, and FePc- C_{60} particles.

Figure S7. The UV-vis spectra of C_{60} , FePc, and FePc- C_{60} .

Figure S8. (a) The XPS spectrum and (c) C 1s spectrum of FePc. (b) The XPS spectrum and (d) C 1s spectrum of FePc- C_{60} particles.

Figure S9. The TGA and DSC curves for (a) FePc, and (b) C_{60} .

Figure S10. The SEM images of (a) FePc- C_{60} _500, (b) FePc- C_{60} _700 and (c) $FePc-C_{60}$ 900.

Figure S11. The convalent bonding based on the coordination pattern of C-C(pyrrole)@FePc with C-C@C5-C₆₀ with the average shortest distances based on DFT calculation. Atom color: brown, C; white, H; blue, N; red, Fe.

Figure S12. The UV-vis spectra of (a) FePc- C_{60} _500, (b) FePc- C_{60} _700,

and (c) FePc- C_{60} _900.

Figure S13. The Raman spectra of FePc-C₆₀ particles, FePc, and C₆₀.

Figure S14. The N₂ isotherms of (a) FePc-C_{60_}500, (c) FePc-C_{60_}700, and (e) FePc- C_{60} _900. The pore size distribution of (b) FePc- C_{60} _500, (d) FePc-C₆₀_700, and (f) FePc-C₆₀_900.

Sample	BET surface area $(m^2 \cdot g^{-1})$	Average pore size nm)	Pore volume $\text{cm}^3 \text{·} \text{g}^{-1}$
$FePc-C_{60}$ 500	12.68	21.28	0.075
$FePc-C60$ 700	125.00	10.32	0.175
$FePc-C_{60}$ 900	239.31	9.33	0.329

Table S1. The porous characteristic properties of $FePc-C₆₀$ carbon electrodes by nitrogen sorption measurements.

Figure S15. The XPS spectra of (a) $FePc-C_{60}$ 500, (b) $FePc-C_{60}$ 700, and (c) FePc- C_{60} _900.

Samples	XPS		Based on N 1s spectra				Based on Fe 2p spectra	
	$N\%$	Fe%	Pyridinic Pyrrolic Graphit $N\%$	$N\%$	$e N\%$	Fe- $N\%$	Fe ₃ N $\frac{0}{0}$	Fe^{2+}/Fe^{3+}
FePc	18.85	2.07				81.5°	$\qquad \qquad \blacksquare$	1/0
$FePc-C60$	6.70	0.80				$75.8^{\rm a}$		1/0
$FePc-C_{60}$ 500	7.12	0.94				70.0 ^a	\overline{a}	1.35
$FePc-C_{60}$ 700	2.28	0.39	12	24.9	14.2	33.8^{b}		0.72
$FePc-C_{60}$ 900	2.98	0.43	10.6	25.7	22.8	15.2^{b}	3.3	0.55

Table S2. The calculated proportion of various elements states in FePc- C_{60} carbons based on the XPS analysis.

a: be the form of Fe-N4 (including pyrrolic N from FePc); b: be the forms of various Fe-Nx.

Figure S16. The XPS C 1s spectra of (a) FePc-C₆₀_500, (b) FePc-C₆₀_700,

and (c) $FePc-C_{60}\900$.

.

Figure S17. The XPS N 1s spectrum of FePc.

Figure S18. The Fe 2p XPS spectra (a) FePc, (b) FePc-C₆₀, and (c) FePc-

 C_{60} 700.

Figure S19. The LSV curves of C_{60} 500, C_{60} 700 and C_{60} 900.

Figure S20. The LSV curves of FePc- C_{60} _500, FePc and MFePc- C_{60} _500.

Sample	E_0 (V)	$E_{1/2}$ (V)	$j_{\text{L}}(\text{mA}\cdot\text{cm}^{-2})$
FePc- C_{60} 500	1.04	0.91	5.05
FePc-C ₆₀ 700	0.92	0.73	4.27
FePc- C_{60} 900	0.97	0.84	4.53
MFePc- C_{60} 500	0.88	0.74	5.16
FePc	0.88	0.75	4.6
Pt/C	0.97	0.87	5.01

Table S3. The comparison of ORR activities of FePc- C_{60} carbon electrodes,

FePc, and Pt/C.

Catalyst	E_0 (V)	$E_{1/2}$ (V)	$j_{\rm L}$ (mA \cdot cm ⁻²)	Ref.
FePc- C_{60} 500	1.04	0.91	5.05	This work
PD/N-C	0.911	0.833	5.29	$\mathbf{1}$
$MFC60 - 130$	0.82	0.76		2
FMN700	0.93	0.81		3
Fe-MFC $_{60}$ -150	085	0.78		$\overline{4}$
$C_{60}(a)Co-N-PCM$	0.98	0.85	5.5	5
$Cu(15%)$ -MFC ₆₀	0.86	0.76	5.18	6
N,S-PCNFs	0.969	0.837	5.50	7
N,S-PHCNSs-75	0.954	0.827	5.64	8
FNCNs-900	0.976	0.851	6.21	9
C_{60} /FeTPP-700		0.877		10
FeN/C ₆₀ O-900	0.98	0.85	5.23	11
FeN@FCS-900	0.93	0.78	4.2	12
$CoTPP/C60 - 800$	0.93	0.824	5.5	13
FePc/FC		0.917		14
CNO-900	0.976	0.853	6.02	15
dFCMC		0.834		16

Table S4. The comparison of the ORR performance of the reported metaldoped C_{60} -derived electrocatalysts in alkaline medium.

References for supporting information in Table S4

- [s1] J. Zhu, Y. Huang, W. Mei, C. Zhao, C. Zhang, J. Zhang, I. S. Amiinu and S. Mu, Angew. Chem. Int. Ed., 2019, 58, 3859-3864.
- [s2] M. R. Benzigar, S. Joseph, H. Ilbeygi, D.-H. Park, S. Sarkar, G. Chandra, S. Umapathy, S. Srinivasan, S. N. Talapaneni and A. Vinu, Angew. Chem. Int. Ed., 2018, 57, 569.
- [s3] Z. Peng, Q. Jiang, P. Peng and F.-F. Li, *Eng. Sci.*, 2021, 14, 27-38
- [s4] M. R. Benzigar, S. Joseph, G. Saianand, A.-I. Gopalan, S. Sarkar, S. Srinivasan, D.-H. Park, S. Kim, S. N. Talapaneni, K. Ramadass and A. Vinu, Microporous Mesoporous Mater., 2019, 285, 21-31.
- [s5] J. Wu, S. Wang, Z. Lei, R. Guan, M. Chen, P. Du, Y. Lu, R. Cao and S. Yang, Nano Res., 2021, 14, 2596-2605.
- [s6] G. Saianand, A. I. Gopalan, J. C. Lee, C. I. Sathish, K. Gopalakrishnan, G. E. Unni, D. Shanbhag, V. Dasireddy, J. Yi, S. Xi, A. H. Al-Muhtaseb and A. Vinu, Small, 2020, 16, e1903937.
- [s7] Z. He, P. Wei, N. Chen, J. Han and X. Lu, Chem.-Eur. J., 2021, 27, 1423-1429.
- [s8] Z. He, P. Wei, T. Xu, J. Han, X. Gao and X. Lu, *Mater. Chem. Front.*, 2021, 5, 7873-7882.
- [s9] Z. He, Z. Zhou, P. Wei, T. Xu, J. Han, K. Huang, K. Guo, W. Huang, T. Akasaka, X. Lu, Chem Asian J., 2023, 18, e202200994.
- [s10] H. Wang, L. Cao, Y. Feng, J. Chen,W. Feng, T. Luo, Y. Hu, C. Yuan, Y. Zhao, Y. Zhao, K. Kajiyoshi, Y. Liu, Z. Li and J. Huang, Chin. Chem. Lett., 2023, 34, 107601.
- [s11] B. Jiang, S. Wang, F. Meng, L. Ju, W. Jiang, Q. Ji and H. D. Quan, CrystEngComm, 2022, 24, 5783-5791.
- [s12] L. Ju, G. Hao, F. Meng, W. Jiang and Q. Ji. J. Mater. Chem. A, 2023, 11, 25534- 25544.
- [s13] A. Yu, Q. Huang, S. Gao, T. Xu, W. Zhang, N. Joshi, P. Peng, Y. Yang, F.-F. Li. Carbon Future, 2024, 1, 9200009.
- [s14] J. Chen, M. Wang, L. Chen, K. Guo, B. Liu, K. Wang, N. Li, L. Bao and X. Lu, Adv. Energy Sustainability Res., 2024, 5, 2400010
- [s15] K. Guo, Z. He, S. Lu, P. Zhang, N. Li, L. Bao, Z. Yu, L. Song, X. Lu, Adv. Funct. Mater., 2023, 33, 2302100.
- [s16] N. Li, M. Li, K. Guo, Z. Guo, R. Wang, L. Bao, G.L. Hou, X. Lu, Adv. Energy Mater., 2024, 14, 2401008.

Figure S21. The LSV curves of (a) FePc- C_{60} 700 and (c) FePc- C_{60} 900 in O2-saturated 0.1 M KOH solution at different rotating rates. The K-L plots of (c) FePc- C_{60} 700 and (d) FePc- C_{60} 900 at different potentials.

Figure S22. The electron transfer number (n) and H_2O_2 % yield of (a) Pt/C,

(b) FePc-C₆₀_700 and (c) FePc-C₆₀_900.

Figure S23. The LSV curves of (a) FePc-C₆₀ 500 and (b) Pt/C in O₂saturated 0.1 M KOH solution at 1600 rpm before and after 5000 potential cycles.

Figure S24. (a) The $i-t$ response curves of FePc-C₆₀_500 and Pt/C. (b) The $i-t$ response curves for the methanol immunity experiments of FePc- C_{60} _500 and Pt/C.