Supporting Information

Dynamic Pyridinethiol Ligand Shuttling within Iron-Anchored Covalent Organic Frameworks Boosts CO₂ Photoreduction

Yong-Kang Zhang,^a Lan Zhao,^a Alexander O. Terent'ev,^b Liang-Nian He^{*a}

^a State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China

^b Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospect, Moscow 119991, Russia

*Corresponding Author

E-mail Addresses: heln@nankai.edu.cn (L.-N. He)

Table of Contents

1. Materials	
2. Synthesis	
3. Characterization	S4
4. Photoelectrochemical measurements	
5. Preparation of working electrode	
6. Photocatalytic CO ₂ reduction experiment	
7. DFT calculation details	S6
8. ¹³ CO ₂ labeling experiment	S6
9. Quantum yield measurement	S6
10. Supplementary figures and tables	S7
11. The coordinates of transition states in DFT calculation (in xyz format)	S24
12. Comparisons of catalytic activity	S35
13. References	S36

1. Materials

All the solvents were purchased from Tianjin Bohua Chemical Reagents Co. Ltd. And argon (99.998%) and CO₂ (99.999%) were from Tianjin Haolun. The reagents 2,2'-bipyridyl-5,5'-dialdehyde (bpy-CHO, 97%), 1,3,5-tris-(4-aminophenyl)triazine (TAPT, 95%), iron(II) acetylacetonate $(Fe(acac)_2,$ 99%), pyridine-2-thiolate (pySH, 98%), 2-mercapto-5methylpyridine (CH₃-pySH, 97%), 3-aminopyridine-2-thiol (NH₂-pySH, 97%). 2mercaptonicotinic acid (COOH-pySH, 97%), 5-Chloropyridine-2-thiol (Cl-pySH, 98%), 6sulfanylnicotinonitrile (CN-pySH, 96%), 2-mercapto-5-nitropyridine (NO₂-pySH, 98%), 2mercapto-5-(trifluoromethyl)pyridine (CF₃-pySH, 97%), p-toluenethiol (CH₃-phSH, 98%), 2mercaptopyridine-N-oxide (NO-pySH, 98%), 2-hydroxypyridine-N-oxide (NO-pyOH, 98%), 4-mercaptopyridine (4-pySH, 97%), 2-hydroxythiophenol (2-phSHOH, 99%), 2.2'dithiodipyridine (pyS-Spy, 98%), 2,2'-bipyridine (bpy, 99%), iron(III) chloride hexahydrate (FeCl₃·6H₂O, 98%), sodium methoxide (98%), acetic acid (98%), extra dry acetonitrile (CH₃CN, 99.9%) were commercially available and used without further purification. 1,3dimethyl-2-phenyl-2,3-dihydro-1*H*-benzo[*d*]imidazole (BIH) was synthesized according to the published procedure.1

2. Synthesis

Synthesis of bpy-COF: bpy-COF was synthesized according to the reported procedure². In a 10 mL pressure tube, 1,3,5-tris-(4-aminophenyl) triazine (TAPT) (92 mg, 0.26 mmol) and 2,2-bipyridyl-5,5-dialdehyde (82.7 mg, 0.39 mmol) were dispersed in a mixed solution of mesitylene and 1,4-dioxane (6 mL, v/v 5.1/0.9), and ultrasonically dispersed for 30 min. Then 0.2 mL acetic acid was added to the resulting yellow suspension. After degassing with Ar by three freeze-pump-thaw cycles, the tube was sealed and heated to 120 °C for 3 d. The resulting yellow precipitate was collected by filtration and washed with tetrahydrofuran and acetone repeatedly to remove the residual guest molecules. After drying under vacuum at 105 °C for 12 h, the yellow powder was obtained with a yield of 84%.

Synthesis of Fe-bpy-COF: In a 100 mL flask, bpy-COF (160 mg) was treated with $Fe(acac)_2$ (76 mg, 0.3 mmol) in 30 mL of ethanol. First, the reaction mixture is dispersed by sonication for 30 minutes. Then it was stirred at room temperature for 12 h under Ar. After that, the precipitate was collected by filtration and successively washed with 500 mL of ethanol and dried under vacuum at 105 °C for 12 h, affording 165 mg dull yellow powder Fe-bpy-COF.

Synthesis of FeS-bpy-COF: In a 100 mL flask, Fe-bpy-COF (200 mg) was treated with pyridine-2-thiolate (pySH, 89 mg, 0.8 mmol) and sodium methoxide (54 mg, 1 mmol) in 30 mL of methanol. Then, the reaction mixture is sonicated for 30 min, and stirred at room temperature for 12 h under Ar. The precipitate was collected by filtration and successively washed with methanol and diethyl ether. The filter cake was dried under vacuum overnight to produce 181 mg yellowish-green powder FeS-bpy-COF.

Synthesis of FebpyCl₃: FebpyCl₃ was synthesized according to the literature.³ The FeCl₃· $6H_2O$ (520 mg, 3.7 mmol) was entirely dissolved in 50 mL of ethanol and then a solution of 2,2'-bipyridine (1000 mg, 3.7 mmol) in 50 mL of ethanol was added dropwise to

the stirred solution of FeCl₃·6H₂O at room temperature, resulting in an orange solution. The solution was stirred continuously for 12 h, gradually turning to orange suspension. After that, the orange precipitate was collected via filtration and washed with glacial ethanol (10*3 mL) and diethyl ether (5*3 mL) sequentially. Drying the precipitate under vacuum at room temperature produced a yellow powder and the yield was 75% (879 mg). UV-Vis (acetonitrile), 298 nm ($\varepsilon = 13710 \text{ M}^{-1} \text{ cm}^{-1}$), 362 nm ($\varepsilon = 5440 \text{ M}^{-1} \text{ cm}^{-1}$). Anal. Found: C, 37.05; H, 2.68; N, 7.99. Calculated for C₁₀H₈N₂FeCl₃: C, 37.73; H, 2.53; N, 8.80.

3. Characterization

Power X-ray diffraction (XRD) was performed on a Rigaku SmartLab D/max 2500 VL/PC diffractometer with the X-ray source of Cu K α radiation ($\lambda = 1.5418$ Å) at 40 kV, 150 mA and data were collected with a scan rate of 0.5°/min in the range of 2°-40°. FTIR spectra were recorded on a Bruker Tensor-II spectrophotometer. Solid state ¹³C NMR spectra were measured by Bruker Avance NEO 400 spectrometer. ¹H NMR spectra were collected for liquid product analysis at room temperature on a Bruker Avance III 400 spectrometer. Scanning electron microscopy (SEM) images were obtained from FEI Apreo S LoVac emission electron microscope. Transmission electron microscopy (TEM) images were obtained from FEI Tecnai G2 F20 transmission electron microscope. XPS X-ray photoelectron spectra (XPS) data were collected using a Kratos Analytical Axis Ultra DLD spectrometer equipped with a monochromatic Al Ka X-ray source (1486.6 eV) operated at 100 W. After calibration using the binding energy of 284.0 eV of sp²-C in the C1s peak, the photoelectron spectroscopy was analyzed. Gas adsorption isotherms were conducted on a micromeritics ASAP 2460 instrument. All the samples were outgassed at 100 °C for 4 h in a vacuum before measurements. N₂ gas adsorption isotherms were measured at -196 °C using a liquid N2 bath. Surface areas were calculated based on Brunauer-Emmett-Teller (BET) method. CO2 adsorption and desorption isotherms were measured at 0 °C and 25 °C. The relationship between adsorption pressure and CO₂ adsorption at different temperatures was obtained by fitting the adsorption data with the Freundlich isothermal model. Subsequently, the obtained data were substituted into the Clausius-Clapeyron equation to finally acquire the curve of isosteric adsorption heat as a function of CO₂ adsorption. UV-vis absorption spectra were measured on an Agilent Cary 60 spectrometer for liquid samples. UV-vis diffuse reflectance spectroscopy (UV-vis DRS) was conducted on a Hitachi UH4100 spectrometer for solid powder samples with BaSO₄ as the reference. Element analysis test was carried out on a vario EL CUBE elementar. Inductively coupled plasma-optical emission spectrometry (ICP-OES) was carried out on a SpectroBlue IL instrument. Steady-state photoluminescence (PL) spectra and Time-resolved photoluminescence (TRPL) decay spectra were recorded at room temperature on an Edinburgh FS5 spectrophotometer. Femtosecond transient absorption spectroscopy (fs-TAS) measurements were performed on a Helios (Ultrafast systems) spectrometers using a regeneratively amplified femtosecond Ti: sapphire laser system (Legend Elite-1K-HE, frequency, 1 kHz; max pulse energy, ~4 mJ; pulse duration, 25 fs) at room temperature. The pump wavelength is 370 nm. Finally, analyze the data through commercial software (Surface Xplorer, Ultrafast Systems). Electrospray ionization mass spectra (ESI/MS) were obtained on an Agilent 6520 Q-TOF LC/MS spectrometer.

4. Photoelectrochemical measurements

All the electrochemical measurements were conducted in 0.5 M Na₂SO₄ electrolyte solution on a CHI potentiostat/galvanostat (CHI660D, CH Instruments Inc., Shanghai) electrochemical working station via a standard three-electrode system. The working electrode is indium-doped tin oxide (ITO) glass plate coated with catalyst slurry, the counter electrode is platinum foil, and Ag/AgCl (saturated KCl) as reference electrode, respectively. Mott-Schottky plots were recorded at different frequencies of 500, 1000, and 1500 Hz. Electrochemical impedance spectroscopy (EIS) was recorded over a 0.1-10000 Hz frequency range. The transient photocurrent responses were recorded over a sampling interval of 20 s using a 300 W Xe lamp equipped with an optical filter ($\lambda \ge 400$ nm). Linear sweep voltammetry (LSV) curves were recorded in the range of $0 \sim -1.1$ V and the sweep rate was 10 mV/s in 0.5 M KHCO₃ electrolyte solution. Cyclic voltammetry (CV) measurements were performed using a fourneck flask with a 3 mm diameter glassy carbon working electrode, Pt sheet auxiliary electrode, and Ag/AgCl (saturated KCl) reference electrode. Electrochemical experiments conducted in 0.1 M tetrabutylammonium hexafluorophosphate in CH_3CN were performed under CO_2 by bubbling for 5 min. The ferrocene was added to organic phase in the last step of the experiments and recorded to calibrate the consistency of the reference electrode, and the corresponding reduction potentials are reported versus the Fc/Fc⁺ couple.

5. Preparation of working electrode

The preparation of the working electrode referred to the previously reported procedure⁴: 2 mg sample was dispersed in 480 μ L dimethylformamide containing 20 μ L Nafion solution (5%) and ultrasound for 30 min. Subsequently, 100 μ L of the mixture was dropped on 1*1 cm² ITO and left in the air to dry.

6. Photocatalytic CO₂ reduction experiment

For typical run, a 10 mL Schlenk tube containing 1 mg Fe-bpy-COF, 0.4 mM pySH (0.14 mg, 1.2 µmol), 1.5 M H₂O (81 µL, 4.5 mmol) and 0.025 M BIH (16.8 mg, 75 µmol) in 3 mL CH₃CN solution was degassed with CO₂ for three freeze-pump-thaw cycles before irradiation at 20 °C with a 300 W Xe lamp equipped with an optical filter ($\lambda \ge 400$ nm). The amount of CO and H₂ produced was analyzed by gas chromatography (GC, FuLi 97902II) with a TCD detector equipped with a packed column TDX-01. The typical volume of injected gas was 1 mL aliquots from the headspace of the reaction cell. Calibration curves were obtained by sampling known amounts of H₂ and CO. Additionally, formate product was quantified by ¹H NMR on a Bruker AV400 spectrometer. A certain amount of the reaction solution was withdrawn, and the insoluble substances were removed by filtration. Then 350 µL was taken out to which 100 µL of acetonitrile-*d*₃ and 50 µL of 10 mM 1,3,5-trimethoxybenzene (TMB) in CH₃CN as internal standard were added. A calibration curve for the detection of formate was determined from the ratio between the area of the formate C-H peak and the aromatic proton signal of 1,3,5-trimethoxybenzene using increasing concentrations of formate. The amount of formate generated in the catalytic test was then determined using this calibration curve.

For the recyclability experiments, the photocatalyst was centrifuged and washed by water and ethanol after each circle illumination (4 h), respectively. Then the Schlenk tube was refilled 3 mL mixed solution of acetonitrile containing 1.5 M H₂O, 0.025 M BIH and 0.4 mM pySH, and the system was degassed with CO₂. Finally, the solution was irradiated under a 300 W Xenon lamp with an optical filter ($\lambda \ge 400$ nm) for the next circle illumination.

7. DFT calculation details

Geometry optimization and frequency analysis were performed in acetonitrile solvent with the SMD implicit-solvation model using B3LYP-D3/def2-SVP level. Single point energies were calculated at the B3LYP-D3/def2-TZVP level with the SMD model (acetonitrile solvent) on optimized geometries.⁵ The activation barriers are calculated using H₂O molecule as an explicit proton source. Time-dependent density functional theory (TDDFT) at the B3LYP-D3/def2-TZVP level of theory is used to model the electronic transitions on the COF fragment with Gaussian16. Hole-electron analysis was done to investigate the electronic excitation features with the aid of Multiwfn program.⁶ The theoretical calculation of BDE values for S-H bond of thiol ligands were obtained by using DFT method M062X-D3/ def2-TZVP level. All of the theoretical calculations were performed with the Gaussian 16 program.⁷

8. ¹³CO₂ labeling experiment

The CH₃CN solution containing 1 mg Fe-bpy-COF, 0.4 mM pySH, 1.5 M H₂O and 0.025 M BIH was degassed by freeze-pump-thaw cycles and then ¹³CO₂ gas was introduced. The ¹³CO₂ gas is generated from purchased Ba¹³CO₃ (abundance 98%). After irradiation for 4 h at 20 °C with a 300 W Xe lamp equipped with an optical filter ($\lambda \ge 400$ nm), the evolved CO was detected by a GCMS-QP2010 SE and the generated formate in the reaction solutions was quantified using ¹H NMR spectra on a Bruker AV400 spectrometer.

9. Quantum yield measurement

The rate of photon flux of the light was determined by a potassium ferrioxalate $(K_3[Fe(C_2O_4)_3])$ actinometer.⁸ The incident light intensity was determined to be 1.519×10^{-7} einstein s⁻¹ (for 420 nm) and 1.137×10^{-7} einstein s⁻¹ (for 400 nm).¹

3.0 mL of CH₃CN solution containing 1 mg Fe-bpy-COF, 0.4 mM pySH, 1.5 M H₂O and 0.025 M BIH was degassed by freeze-pump-thaw cycles and CO₂ was introduced. After irradiation for 1 h at 20 °C with a 300 W Xe lamp equipped with a 400 nm band pass filter, the amount of the generated CO during catalysis was determined by GC and the amount of HCOO⁻ was determined by ¹H NMR on a Bruker AV400 spectrometer. Quantum yield of the reaction was calculated by following equation:

$$\Phi(\%) = \frac{moles}{co \text{ or } HCOO^{-}} \times 2}{incident \ photons} \times 100\%$$

It can be found the amount of the generated CO and HCOO⁻ was 0.25 µmol and 1.05 µmol respectively after 1 h of irradiation under 420 nm light. And the generated CO and HCOO⁻ was 1.07 µmol and 2.56 µmol respectively after 1 h of irradiation under 400 nm light. The quantum yield was estimated to be $\Phi_{CO} = 0.09\%$ and $\Phi_{HCOO}^- = 0.38\%$ under 420 nm light. The quantum yield was estimated to be $\Phi_{CO} = 0.52\%$ and $\Phi_{HCOO}^- = 1.25\%$ under 400 nm light.

10. Supplementary figures and tables

Figure S1. TEM image of (a) bpy-COF, (b) Fe-bpy-COF, (c) FeS-bpy-COF, and (d-j) element mapping of FeS-bpy-COF.

Figure S2. The total XPS profiles of bpy-COF, Fe-bpy-COF and FeS-bpy-COF.

Figure S3. C 1s XPS spectra of bpy-COF, Fe-bpy-COF and FeS-bpy-COF.

Table S1. N₂ and CO₂ physisorption results of bpy-COF and FeS-bpy-COF.

Sampla	S _{BET}	V _{total}	V _{micro}	CO ₂	(cm ³ g ⁻¹)	- (kI mol-1)
Sample	(m ² g ⁻¹)	(cm ³ g ⁻¹)	(cm ³ g ⁻¹)	0 °C	25 °C	$- Q_{st}(KJ III01^{-})$
bpy- COF	173.7	0.191	0.062	10.6	5.3	28.4
FeS-bpy- COF	123.3	0.170	0.025	9.7	6.6	20.1

Figure S4. Pore size distribution profile (a) bpy-COF, (b) FeS-bpy-COF

Figure S5. CO₂ adsorption isotherm patterns at 0 $^\circ$ C

Table S2. Elemental analysis experimental and predictive results

<u>Camala</u> —	Mass percentage of different elements (%)				
Sample –	Ν	С	Н		
bpy-COF	18.38	70.44	4.70		
Fe-bpy-COF	17.77	65.54	4.39		
FeS-bpy-COF	17.53	66.56	4.03		
Elemental Analy	ysis: C, 78.35; H, 4.52; N, 17.13 Ele	$\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \int_{0}^{0} \int_{0$	9.57		
	bpy-COF	Fe-bpy-COF			
O LO REP					

Elemental Analysis: C, 65.79; H, 3.94; Fe, 7.28; N, 14.61; S, 8.36

FeS-bpy-COF

 Table S3. ICP-OES results of Fe-bpy-COF and FeS-bpy-COF.

Sample	Fe (wt%)	S (wt%)
Fe-bpy-COF	2.77	-
FeS-bpy-COF	2.41	0.375

Figure S6. Mott-Schottky plots of bpy-COF.

Figure S7. Mott-Schottky plots of Fe-bpy-COF.

Figure S8. Mott-Schottky plots of FeS-bpy-COF.

Figure S9. PL spectra of different pySH concentrations in CH₃CN (Ex: 440 nm, with 510nm filter).

Figure S10. Time-resolved photoluminescence decay spectra of bpy-COF with 450 nm laser.

Figure S11. Time-resolved photoluminescence decay spectra of Fe-bpy-COF with 450 nm laser.

Figure S12. Time-resolved photoluminescence decay spectra of FeS-bpy-COF with 450 nm laser.

Sample	Lifetime(ns)	Coefficient	Lifetime average(ns)
	$\tau_1\!=\!0.44$	$A_1 = 0.145$	1 10
бру-СОР	$\tau_2 = 2.53$	$A_2 = 0.014$	$\tau_{\rm average} = 1.18$
Fe-bpy-COF	$\tau_1 = 0.31$	$A_1 = 0.190$	1.00
	$\tau_2 = 2.15$	$A_2 = 0.017$	$\tau_{\rm average} = 1.00$
FeS-bpy-COF	$\tau_1 = 0.31$	$A_1 = 0.184$	0.00
	$\tau_2\!=\!2.08$	$A_2 = 0.017$	$\tau_{average} = 0.98$

 Table S4. Fluorescence lifetime test results

Table S5. The fitting parameters for the kinetic traces at 610 nm in fs-TA

Sample	τ ₁ , ps (A ₁ ,%)	τ ₂ , ps (A ₂ ,%)	τ ₃ , ps (A ₃ ,%)	τ_{avg} , ps
bpy-COF	1.32(65.7)	24.3 (18.3)	1990 (16.0)	323.71
Fe-bpy-COF	1.09 (63.3)	19.2 (24.6)	2440 (12.1)	300.65
FeS-bpy-COF	1.10 (46.8)	23.7 (37.3)	2550 (15.9)	414.80

Figure S13. The product yields catalyzed by FeS-bpy-COF with additional different concentrations of pySH.

Figure S14. The product yields catalyzed by Fe-bpy-COF or FeS-bpy-COF with additional 0.4 mM pySH.

Figure S15. Isotopic labeling experiment (a) Mass spectra of CO, and (b) ¹H NMR spectra of HCOO⁻ generated under ¹²CO₂ or ¹³CO₂.

Figure S16. ¹H NMR spectra in CD₃CN, (a) FebpyCl₃, (b) pySH, (c) pyS-Spy.

Figure S17. Steady-state measurements of absorption spectral in CH_3CN solution containing 0.2 mM FebpyCl₃, 0.4 mM pySH, 0.025 M BIH and 1.5 M H₂O upon photo-irradiation under (a) CO₂ and (b) Ar.

Figure S18. PL spectra of different pySH concentrations in CH₃CN (Ex: 270 nm).

Figure S19. PL spectra of 0.6 mM pySH with different FebpyCl₃ concentrations in CH₃CN (Ex: 270 nm).

Figure S20. Frontier molecular orbitals of (a) bpy-COF fragment; (b) Fe-bpy-COF fragment; (c) FeS-bpy-COF fragment.

Donor tragment —	1	2	3	4	
1	0.004	0.012	0.216	0.080	
2	0.009	0.026	0.456	0.170	
3	0.000	0.000	0.018	0.007	
4	0.000	0.000	0.000	0.000	
Table S7. Variation of di	Fable S7. Variation of different fragments population number				
Fragment	1	2	3	4	
Variation of population	-0.298	-0.621	0.664	0.256	

Table So. Transferred electrons between fragmen	Table S6.	Transferred	electrons	between	fragment
--	-----------	-------------	-----------	---------	----------

number

Figure S21. High-resolution mass spectrometry results of the solution after 1h reaction for Fe-bpy-COF with 2 mM pySH system. (a) Mass spectra of m/z from 218 to 232; (b) View of the mass spectrometry with localized zoom in the red box; (c) Mass spectra of m/z from 255 to 330; (d) Mass spectra of m/z from 353 to 410.

Figure S22. The product yields catalyzed by Fe-bpy-COF with additional 0.4 mM pySH or 0.2 mM pyS-Spy.

Figure S23. (a) PL spectra of 0.3 mM pyS-Spy with different BIH concentrations in CH₃CN (Ex: 270 nm). (b) The relationship between PL intensity at 371 nm and BIH concentration fitted by polynomial method

Figure S24. Cyclic voltammograms of 20 mM pyS-Spy in CH_3CN solution containing 0.1 M TBAPF₆ at scan rate 0.1 V/s under argon.

$ \sum_{n=1}^{N} \dot{s} + \sum_{n=1}^{N} \dot{f}_{n} + $						
Entry	abbreviation	∆ <i>H</i> kcal/mol	Entry	abbreviation	ΔH kcal/mol	
1	pySH	88.4	8	CF ₃ -pySH	90.2	
2	CH ₃ -pySH	84.9	9	CH ₃ -phSH	78.6	
3	NH ₂ -pySH	91.0	10	NO-pySH	87.0	
4	COOH-pySH	83.8	11	NO-pyOH	69.9	
5	Cl-pySH	85.8	12	4-pySH	86.8	
6	CN-pySH	88.2	13	2-phOHSH	80.5	
7	NO ₂ -pySH	88.4	/	BIH	71.5	

Table S8. BDE values obtained by theoretical calculations for BIH and thiol ligands.

Figure S25. UV-vis spectra of 0.2 mM pySH with different substituents in CH₃CN.

Scheme S1. Proposed catalytic mechanism for photocatalytic CO₂ reduction by FeS-bpy-COF.

11. The coordinates of transition states in DFT calculation (in xyz format)

TS₁[Fe-H]*

-13			
С	-5.456113	-2.792417	-0.859482
С	-7.609650	-1.903879	-0.575150
С	-8.213991	-3.045704	-1.089872
С	-7.385164	-4.106039	-1.500332
С	-6.008813	-3.983981	-1.386772
С	-4.045750	-2.531610	-0.699057
С	-2.475751	-0.927701	-0.008691
С	-1.371420	-1.749943	-0.342590
С	-1.682179	-3.041547	-0.881631
С	-2.995115	-3.415415	-1.054454
Н	-8.205036	-1.052855	-0.236949
Н	-7.820276	-5.022165	-1.907472
Н	-5.355121	-4.798090	-1.700779
Н	-2.310826	0.069888	0.405795
Н	-0.865041	-3.712171	-1.152488
Н	-3.233327	-4.394987	-1.471701
Ν	-3.737663	-1.294350	-0.167993
Ν	-6.281465	-1.778168	-0.461151
Fe	-5.289253	-0.188908	0.336573
С	-6.874234	0.139318	2.376374
С	-7.865053	0.486727	3.312848
С	-8.832941	1.414889	2.939742
С	-8.808616	1.977849	1.652281
С	-7.799008	1.590123	0.777804
Ν	-6.861077	0.703704	1.143107
Н	-9.614872	1.700951	3.648208
Н	-7.863298	0.026365	4.302641
Н	-9.561182	2.700077	1.331958
Н	-7.733184	1.978462	-0.241149
С	-5.081517	4.424427	0.020297
С	-5.287832	5.342347	-0.985255
С	-5.485107	4.857977	-2.296478
С	-5.479348	3.497606	-2.555453
С	-5.276067	2.575038	-1.500573
Ν	-5.079688	3.102075	-0.262928
Н	-5.647506	5.561645	-3.116682
Н	-4.914209	4.690064	1.065353
Н	-5.294217	6.409258	-0.761247
Н	-5.637146	3.114872	-3.564615

S	-5.563085	-1.001206	2.536099
S	-5.265949	0.862981	-1.748062
С	2.294813	-1.516531	-0.302211
С	3.361284	-2.457384	-0.246373
С	2.651584	-0.135488	-0.282722
С	4.682740	-2.056335	-0.145429
Н	3.104165	-3.519465	-0.275537
С	3.976661	0.260543	-0.191493
Н	1.876330	0.628744	-0.366877
С	5.027495	-0.683532	-0.113131
Н	5.475570	-2.804104	-0.093334
Н	4.221276	1.324021	-0.187745
С	6.426817	-0.253871	-0.015859
С	8.646931	-0.763252	0.149393
С	7.984686	1.413623	0.074861
С	8.321304	2.864037	0.080894
С	9.660315	3.286613	0.175485
С	7.305266	3.833922	-0.007951
С	9.974589	4.646905	0.181378
Н	10.451145	2.538819	0.244601
С	7.622054	5.193316	-0.002050
Н	6.266163	3.510926	-0.082032
С	8.957210	5.604423	0.092612
Н	11.018667	4.962009	0.255600
Н	6.823554	5.936607	-0.071911
С	9.733770	-1.776837	0.241518
С	9.431138	-3.151305	0.247534
С	11.079969	-1.375053	0.324366
С	10.451196	-4.100195	0.334279
Н	8.389232	-3.467373	0.184391
С	12.098437	-2.326064	0.410752
Н	11.319222	-0.311022	0.320304
С	11.787791	-3.691079	0.415956
Н	10.202916	-5.164731	0.338275
Н	13.140130	-2.000927	0.474401
С	-0.040246	-1.274434	-0.140476
Н	0.045456	-0.254770	0.274528
Н	12.586051	-4.435093	0.483867
Н	9.204157	6.669464	0.097233
N	6.699210	1.065707	-0.010856
N	8.993482	0.532806	0.156566
N	7.387081	-1.195630	0.064379
N	1.017362	-2.009181	-0.402059
Н	-9.300879	-3.104387	-1.165746

Η	-4.893350	2.407709	0.485257		
Н	-4.462947	0.946190	0.961570		
Therma	al correction to Gibb	os Free Energy=	0.5675870 (A.U.)		
Electro	nic Energy= -41	94.9069420 (A.U.)		
The number of imaginary frequencies: 1					

TS₂[Fe-CO₂]*

-7.413643	-0.625363	-2.073837
-6.140078	-0.711437	-1.647239
-5.361196	-1.758220	-2.076195
-5.916605	-2.783704	-2.878500
-7.238393	-2.702543	-3.279924
-8.004166	-1.589042	-2.881425
-5.206274	0.596867	-0.507795
-3.620498	-0.476427	-1.115052
-2.341274	-0.244591	-0.841258
-1.294559	-1.141403	-1.132455
-1.663762	-2.410508	-1.678936
-2.989176	-2.666823	-1.938777
-3.974790	-1.673449	-1.703028
-4.997998	-0.937134	1.341707
-6.156510	-1.115026	2.571138
-7.282263	-0.338842	2.707927
-8.216558	-0.497337	3.674073
-8.098578	-1.483232	4.621332
-6.949535	-2.318801	4.555410
-6.010757	-2.138464	3.567293
-5.192449	2.379526	-2.045293
-4.159540	2.964212	-0.781552
-4.080422	2.047873	0.215653
-3.398725	2.299799	1.334431
-2.692015	3.488382	1.507673
-2.730614	4.441233	0.475296
-3.470413	4.189458	-0.676347
-5.125820	-2.772644	3.500402
-6.810442	-3.111549	5.295680
-8.859931	-1.607175	5.391460
-9.047192	0.210292	3.635592
-3.537240	4.913645	-1.490264
-2.187235	5.385235	0.579721
-2.134661	3.668412	2.428749
-3.433444	1.516952	2.096571
	-7.413643 -6.140078 -5.361196 -5.916605 -7.238393 -8.004166 -5.206274 -3.620498 -2.341274 -1.294559 -1.663762 -2.989176 -3.974790 -4.997998 -6.156510 -7.282263 -8.216558 -8.098578 -6.949535 -6.010757 -5.192449 -4.159540 -4.080422 -3.398725 -2.692015 -2.730614 -3.470413 -5.125820 -6.810442 -8.859931 -9.047192 -3.537240 -2.187235 -2.134661 -3.433444	-7.413643 -0.625363 -6.140078 -0.711437 -5.361196 -1.758220 -5.916605 -2.783704 -7.238393 -2.702543 -8.004166 -1.589042 -5.206274 0.596867 -3.620498 -0.476427 -2.341274 -0.244591 -1.294559 -1.141403 -1.663762 -2.410508 -2.989176 -2.666823 -3.974790 -1.673449 -4.997998 -0.937134 -6.156510 -1.115026 -7.282263 -0.338842 -8.216558 -0.497337 -8.098578 -1.483232 -6.949535 -2.318801 -6.010757 -2.138464 -5.192449 2.379526 -4.159540 2.964212 -4.080422 2.047873 -3.398725 2.299799 -2.692015 3.488382 -2.730614 4.441233 -3.470413 4.189458 -5.125820 -2.772644 -6.810442 -3.111549 -8.859931 -1.607175 -9.047192 0.210292 -3.537240 4.913645 -2.134661 3.668412 -3.433444 1.516952

Н	-2.120722	0.706927	-0.352308
Η	-0.880583	-3.146817	-1.865055
Н	-3.290669	-3.637247	-2.338221
Н	-5.289418	-3.616311	-3.199966
Η	-7.673843	-3.485531	-3.907052
Н	-9.050243	-1.481177	-3.175033
Н	-7.957666	0.234741	-1.679927
С	-6.758901	1.555659	0.565792
0	-6.467299	2.177484	1.590941
0	-7.863605	1.199162	0.120370
Η	-7.394924	0.456698	2.067215
С	0.060737	-0.776864	-0.834596
Η	0.199075	0.235628	-0.408759
Ν	1.062650	-1.592543	-1.010590
С	2.366969	-1.221526	-0.803148
С	2.853815	0.118627	-0.798304
С	3.324449	-2.256060	-0.614054
С	4.194379	0.392984	-0.589001
Н	2.165065	0.943691	-0.991408
С	4.661336	-1.978645	-0.395263
Н	2.958585	-3.285159	-0.636443
С	5.134699	-0.643220	-0.373184
Н	4.550570	1.424281	-0.596847
Н	5.375717	-2.788099	-0.239200
С	6.544644	-0.345592	-0.149824
С	8.242546	1.168618	0.064050
С	8.681431	-1.051423	0.245407
С	8.713110	2.582535	0.075268
С	7.805587	3.637032	-0.127067
С	10.069951	2.881672	0.288317
С	8.246600	4.960855	-0.116437
Н	6.754944	3.394886	-0.291233
С	10.508788	4.206870	0.298444
Η	10.766470	2.057265	0.444549
С	9.599449	5.250888	0.096236
Н	7.531074	5.772185	-0.274844
Н	11.566777	4.427358	0.465179
Н	9.943802	6.288814	0.104379
С	9.651306	-2.162210	0.463355
С	11.013055	-1.888978	0.679220
С	9.216510	-3.499047	0.455952
С	11.919723	-2.930769	0.883159
Н	11.340819	-0.848898	0.683231
С	10.124613	-4.538721	0.660066

Н	8.157877	-3.700253	0.287727
С	11.479323	-4.258811	0.874390
Н	12.976754	-2.705900	1.050098
Н	9.774280	-5.574412	0.652177
Н	12.190081	-5.074435	1.034289
Ν	6.948137	0.945508	-0.143619
Ν	9.157814	0.204763	0.265132
Ν	7.406058	-1.370619	0.044924
Therm	al correction to Gibb	s Free Energy=	0.5644310 (A.U.)

Electronic Energy= -4307.1042456 (A.U.)

The number of imaginary frequencies: 1

TS₃[Fe-COOH+H⁺]*

-11			
С	-5.150906	-2.364067	-0.095679
С	-7.098254	-1.581333	0.904307
С	-7.807731	-2.714669	0.526838
С	-7.155274	-3.702022	-0.222488
С	-5.809196	-3.530616	-0.518024
С	-3.719379	-2.133686	-0.219256
С	-1.995700	-0.727437	0.454443
С	-1.010938	-1.571792	-0.081963
С	-1.439823	-2.755874	-0.730694
С	-2.792345	-3.033086	-0.786769
Н	-7.579044	-0.777175	1.454288
Н	-7.688791	-4.593005	-0.563432
Н	-5.261521	-4.293913	-1.072207
Н	-1.718007	0.204197	0.952856
Н	-0.693444	-3.423751	-1.164035
Н	-3.147166	-3.944865	-1.268785
Ν	-3.300211	-0.978393	0.376191
Ν	-5.816674	-1.371411	0.564833
Fe	-4.809301	0.277265	0.764519
С	-3.475419	1.631604	2.578528
С	-2.678957	2.539131	3.315226
С	-2.040941	3.573782	2.641720
С	-2.200124	3.711911	1.250903
С	-2.998086	2.782178	0.586325
Ν	-3.584975	1.772471	1.230797
Н	-1.423418	4.287146	3.196933
Η	-2.592142	2.414056	4.396274
Н	-1.726552	4.526824	0.699851

Н	-3.194775	2.824820	-0.489273
С	-8.351014	-0.545419	-2.521035
С	-9.031033	0.560396	-3.038277
С	-8.329450	1.769347	-3.121234
С	-7.013225	1.817864	-2.675620
С	-6.412116	0.648966	-2.151008
Ν	-7.087196	-0.513566	-2.100295
Н	-8.812182	2.669684	-3.515764
Н	-8.868640	-1.507161	-2.420767
Н	-10.073930	0.474611	-3.352968
Н	-6.437526	2.744876	-2.691300
S	-4.393421	0.285830	3.153067
S	-4.750020	0.705442	-1.558597
С	2.664764	-1.495445	-0.375369
С	3.679260	-2.457614	-0.158820
С	3.058291	-0.151639	-0.590477
С	5.015771	-2.090795	-0.115965
Н	3.375154	-3.496555	-0.015552
С	4.398860	0.209871	-0.558532
Н	2.297798	0.600414	-0.811455
С	5.403598	-0.748102	-0.313968
Н	5.788683	-2.838333	0.066199
Н	4.692802	1.246194	-0.729621
С	6.822067	-0.359474	-0.277915
С	9.018619	-0.914515	-0.018617
С	8.438043	1.242520	-0.433087
С	8.824750	2.663236	-0.648172
С	10.176768	3.047036	-0.616459
С	7.841241	3.639481	-0.885275
С	10.536569	4.380149	-0.818041
Н	10.933195	2.283624	-0.431652
С	8.203967	4.971735	-1.086349
Н	6.794827	3.333474	-0.907648
С	9.551954	5.346284	-1.053470
Н	11.590804	4.668298	-0.791311
Н	7.431061	5.722638	-1.269375
С	10.065121	-1.941925	0.236212
С	9.707510	-3.286633	0.436663
С	11.423001	-1.581013	0.279984
С	10.688839	-4.249394	0.675661
Η	8.651768	-3.557469	0.401341
С	12.402288	-2.545960	0.519424
Н	11.691497	-0.535723	0.123756
С	12.038714	-3.882603	0.717883

Η	10.399671	-5.292169	0.830316
Н	13.455482	-2.254608	0.551777
С	0.385587	-1.199064	0.035929
Н	0.581078	-0.245007	0.564486
Н	12.806690	-4.637968	0.905568
Н	9.834722	6.390682	-1.210980
Ν	7.140781	0.932296	-0.477051
Ν	9.415229	0.352181	-0.206854
Ν	7.744565	-1.311185	-0.045476
Ν	1.349766	-1.925706	-0.415336
Н	-8.867838	-2.770024	0.775130
С	-6.293749	1.585522	0.968718
0	-7.598962	1.257210	0.497780
0	-6.214604	2.725014	1.386754
Н	-8.079195	2.100493	0.602597
0	-9.891109	-0.446455	0.203862
Н	-9.013786	-0.029150	0.096304
Н	-10.453513	0.311599	0.407389
Therm	al correction to Gibl	bs Free Energy=	0.5887030 (A.U.)

Electronic Energy= -4383.6259088 (A.U.)

The number of imaginary frequencies: 1

TS4[Fe-H+H⁺]*

01

С	-5.554520	-2.836540	-0.966521
С	-7.673420	-1.973567	-0.525263
С	-8.292024	-3.079751	-1.100414
С	-7.497325	-4.106784	-1.622392
С	-6.111776	-3.980648	-1.555046
С	-4.113646	-2.574773	-0.853666
С	-2.531889	-1.049771	-0.093392
С	-1.468206	-1.841251	-0.543588
С	-1.774494	-3.061191	-1.178603
С	-3.103423	-3.426368	-1.331863
Н	-8.248710	-1.149934	-0.101128
Н	-7.950507	-4.990384	-2.077021
Н	-5.466486	-4.762523	-1.956264
Н	-2.343476	-0.095754	0.402652
Н	-0.967540	-3.700880	-1.540113
Н	-3.361695	-4.364895	-1.822671
Ν	-3.814437	-1.399668	-0.240536
Ν	-6.335997	-1.850012	-0.446723

Fe	-5.391997	-0.369465	0.397699
С	-4.319515	0.228737	2.726980
С	-3.667875	0.806528	3.838297
С	-3.078892	2.059595	3.700421
С	-3.137818	2.725508	2.463621
С	-3.794142	2.097967	1.408045
Ν	-4.369434	0.893521	1.539146
Н	-2.570891	2.522070	4.551433
Н	-3.636022	0.262253	4.784557
Н	-2.682626	3.707353	2.321186
Н	-3.859992	2.555865	0.417679
С	-7.406328	3.696397	-0.026890
С	-7.358356	4.762372	-0.897480
С	-6.599384	4.618088	-2.083859
С	-5.925102	3.441315	-2.354289
С	-5.979353	2.362287	-1.431265
Ν	-6.724000	2.565565	-0.309223
Н	-6.547635	5.445195	-2.796927
Н	-7.983711	3.671100	0.898544
Н	-7.899804	5.681766	-0.672872
Н	-5.340849	3.320440	-3.267692
S	-5.128169	-1.304169	2.637126
S	-5.173881	0.859650	-1.622651
С	2.219625	-1.556219	-0.620094
С	3.249402	-2.485160	-0.363750
С	2.559455	-0.195028	-0.780546
С	4.567587	-2.064609	-0.232093
Н	2.988332	-3.540871	-0.260941
С	3.882268	0.218864	-0.660923
Н	1.782772	0.532675	-1.025222
С	4.906866	-0.704952	-0.378772
Н	5.353015	-2.791272	-0.021513
Н	4.134608	1.271712	-0.792833
С	6.314601	-0.258914	-0.253263
С	8.514385	-0.743722	0.088711
С	7.864516	1.410863	-0.264496
С	8.203130	2.852183	-0.398434
С	9.538170	3.284911	-0.291182
С	7.192917	3.803746	-0.633423
С	9.854253	4.638572	-0.416865
Н	10.324054	2.551019	-0.109007
С	7.512144	5.156739	-0.757933
Н	6.157077	3.472681	-0.716572
С	8.842954	5.578269	-0.650318

Н	10.894642	4.962812	-0.332177
Н	6.719106	5.886681	-0.939520
С	9.588208	-1.738622	0.347668
С	9.277793	-3.104947	0.482129
С	10.929844	-1.328186	0.460234
С	10.287146	-4.038234	0.723339
Н	8.239525	-3.427326	0.395381
С	11.936960	-2.263986	0.701265
Н	11.174981	-0.270549	0.356640
С	11.619128	-3.621101	0.833449
Н	10.034122	-5.096634	0.825819
Н	12.975343	-1.933529	0.786472
С	-0.094053	-1.372834	-0.344087
Н	0.011891	-0.412044	0.192018
Н	12.408976	-4.353150	1.021809
Н	9.091730	6.638369	-0.748162
Ν	6.581616	1.047844	-0.384404
Ν	8.859380	0.545108	-0.030146
Ν	7.254412	-1.183951	-0.014342
Ν	0.917801	-2.044152	-0.752457
Н	-9.382101	-3.130418	-1.135313
Н	-6.766108	1.724638	0.319413
Н	-6.779295	0.262741	0.941263
0	-8.872324	1.480233	1.603637
Н	-9.320195	1.421238	0.745116
Н	-8.043471	0.971599	1.445208

Thermal correction to Gibbs Free Energy= 0.5903730 (A.U.)

Electronic Energy= -4195.4368667 (A.U.)

The number of imaginary frequencies: 1

TS₅[Fe-OCHO]*

01			
С	7.398630	-0.348750	1.368908
Ν	6.071153	-0.441881	1.191910
С	5.381239	-1.413903	1.844168
С	6.028901	-2.339413	2.671794
С	7.409992	-2.250129	2.839478
С	8.105956	-1.231847	2.181769
Fe	4.969647	0.741312	0.082520
Ν	3.536001	-0.335116	0.819745
С	2.233443	-0.163738	0.567863
С	1.243231	-1.002794	1.092791

С	1.647870	-2.073431	1.911864
С	2.998634	-2.249421	2.174278
С	3.931169	-1.360632	1.618053
S	4.975269	-0.650509	-1.836291
С	6.419580	-1.600571	-1.912448
Ν	7.638813	-1.054270	-1.651405
С	8.795172	-1.751866	-1.674165
С	8.807772	-3.093938	-1.989774
С	7.576596	-3.707274	-2.299877
С	6.401780	-2.974199	-2.263243
S	4.667209	2.507722	1.663005
С	3.788228	3.071430	0.268023
Ν	3.839688	2.162365	-0.741156
С	3.260122	2.414005	-1.923209
С	2.561421	3.593977	-2.161209
С	2.478483	4.539050	-1.124230
С	3.093157	4.285618	0.098368
Н	5.440092	-3.440904	-2.480441
Н	7.544975	-4.768609	-2.559400
Н	9.746075	-3.649198	-2.001735
Н	9.694707	-1.181636	-1.432760
Н	3.053495	5.005222	0.918487
Н	1.935882	5.475986	-1.278040
Н	2.095965	3.770531	-3.132358
Н	3.366029	1.640766	-2.689124
Н	1.967262	0.674205	-0.077963
Н	0.899026	-2.747986	2.330481
Н	3.334049	-3.069839	2.808773
Н	5.458995	-3.115322	3.182943
Н	7.933979	-2.963129	3.479680
Н	9.186305	-1.118335	2.288044
Н	7.902878	0.447301	0.818886
Н	7.733279	-0.000209	-1.465661
Н	6.255207	1.808810	-0.657237
С	7.218910	2.308878	-1.077023
0	8.153259	1.497386	-1.305259
0	7.138493	3.517365	-1.224082
С	-0.163029	-0.733230	0.773979
Н	-0.349346	0.140445	0.123341
N	-1.110261	-1.473709	1.213594
С	-2.449390	-1.164313	0.964389
С	-3.341788	-2.228062	0.718531
С	-2.955319	0.153162	0.997427
С	-4.686515	-1.980344	0.468661

Η	-2.953329	-3.248948	0.715580
С	-4.305809	0.393622	0.764784
Н	-2.286916	0.984249	1.232741
С	-5.191677	-0.665103	0.487987
Н	-5.364027	-2.810022	0.264096
Η	-4.688237	1.414472	0.798594
С	-6.627721	-0.401601	0.232218
С	-8.713816	-1.163299	-0.276509
С	-8.362450	1.064047	0.048069
С	-8.883544	2.455208	0.103150
С	-10.247979	2.716386	-0.123359
С	-8.019229	3.530243	0.383491
С	-10.735340	4.023188	-0.070128
Η	-10.921722	1.886630	-0.340115
С	-8.509576	4.835920	0.435389
Η	-6.961230	3.332352	0.559427
С	-9.868368	5.086487	0.209078
Н	-11.796980	4.213757	-0.247121
Н	-7.828839	5.662768	0.653607
Η	-10.251304	6.109652	0.250496
С	-9.632266	-2.288937	-0.591502
С	-9.152192	-3.611388	-0.634296
С	-10.994346	-2.047410	-0.851552
С	-10.015804	-4.667167	-0.930018
Η	-8.097464	-3.802885	-0.433536
С	-11.855370	-3.105361	-1.147215
Н	-11.370287	-1.024121	-0.820288
С	-11.369291	-4.417751	-1.187259
Н	-9.631751	-5.690040	-0.960236
Η	-12.911160	-2.905720	-1.347633
Η	-12.044708	-5.245620	-1.418955
Ν	-7.060620	0.865335	0.288767
Ν	-9.220325	0.076127	-0.238873
Ν	-7.424762	-1.442318	-0.046262
Thern	nal correction to Gib	bs Free Energy=	0.5762290 (A.U.)

Electronic Energy= -4307.6487756 (A.U.)

The number of imaginary frequencies: 1

12. Comparisons of catalytic activity

Catalyst	Photosensitizer Sacrificial agent	Reaction solvent	Product Yield (μmol g ⁻¹ h ⁻¹)	TON	Irradiation condition	Ref
Fe-bpy-COF	pySH	CH ₃ CN/H ₂ O	4052 (HCOO ⁻)	46	$\lambda \ge 400 \text{ nm}$	This
	BIH		2123 (CO)	4h	(300 W Xe lamp)	work
FeS-bpy-COF		CH ₃ CN/H ₂ O	264 (HCOO ⁻)	3.1	$\lambda \ge 400 \text{ nm}$	This
	BIH		94 (CO)	4h	(300 W Xe lamp)	work
Re-COF	/	CH ₃ CN	750(CO)	48	$\lambda \ge 420 \text{ nm}$	2
	TEOA			20h	(225W Xe lamp)	
Ni-TpBpy	[Ru(bpy) ₃]Cl ₂	CH ₃ CN/H ₂ O	966(CO)	13.6	$\lambda \ge 420 \text{ nm}$	9
	TEOA			5h	(300 W Xe lamp)	
Bpy-sp2c-COF	/	CH ₃ CN	1040(CO)	18.7	$\lambda \ge 420 \text{ nm}$	10
	TEOA			17.5h	(300 W Xe lamp)	
COF-367-CoII	1	CH ₃ CN	48.6(HCOO ⁻)	/	$\lambda \ge 380 \text{ nm}$ (300 W Xe lamp)	11
	/ TEA		16.5 (CO)			
			12.8 (CH ₄)			
COF-367-CoIII	1	CH ₃ CN	93(HCOO-)	/	1 > 290	11
			5.5 (CO)		$\lambda \ge 380 \text{ nm}$	
	IEA		10.1 (CH4)		(300 w Xe lamp)	
COF-367-Co	[Ru(bpy) ₃]Cl ₂	шо	101(2(00)	20.2	$\lambda \ge 420 \text{ nm}$	12
NSs	AA	H_2O	10162 (CO)	2h	(300 W Xe lamp)	12
Co-PI-COF	/	CH ₃ CN	50 (HCOO-)	/	$\lambda \ge 420 \text{ nm}$	13
	TEOA				(150 W Xe lamp)	
DQTP COF-Co	[Ru(bpy) ₃]Cl ₂	CH ₃ CN	1020 (CO)	22.5	$\lambda \ge 420 \text{ nm}$	14
	TEOA			4h	(300 W Xe lamp)	
Fe SAS/TrCOF	[Ru(bpy) ₃]Cl ₂	CH ₃ CN/H ₂ O	980.3 (CO)	4.89	$\lambda \ge 420 \text{ nm}$	15
	TEOA			4h	(300 W Xe lamp)	
H ₂ PReBpy-CO	/	CH ₃ CN	447 (HCOO-)	1	$\lambda \ge 400 \text{ nm}$	16
F	TEA		1200 (CO)	/	(300 W Xe lamp)	
CoPor-DPP-	[Ru(bpy) ₃]Cl ₂		10201 (CO)	/	$\lambda \ge 420 \text{ nm}$	17
COF	TIPA	CH_3CN/H_2O			(300 W Xe lamp)	

 $\textbf{Table S9}\ Comparison \ of \ the \ performance \ of \ Photocatalytic \ CO_2 \ conversion \ with \ reported \ photocatalysts.$

Co-2,3-DHTA-	[Ru(bpy) ₃]Cl ₂	CH ₃ CN/H ₂ O	18000 (CO)	/	$\lambda \ge 420 \text{ nm}$	18
COF	TEOA				(300 W Xe lamp)	
Cu-Bpy-COF	/	H ₂ O	19 (CH ₄)	/	$\lambda \ge 420 \text{ nm}$	4
	TEA				(300 W Xe lamp)	
Cu-Bpy-COF	/	DMF	19 (CO)	/	$\lambda \ge 420 \text{ nm}$	4
	TEA				(300 W Xe lamp)	
Co-TAPT-	[Ru(bpy) ₃]Cl ₂	CH ₃ CN/H ₂ O	8390 (CO)	/	$\lambda \ge 420 \text{ nm}$	19
COF-1	TEOA				(300 W Xe lamp)	
Re-f-COF	/	CH ₃ CN	790 (CO)	/	$\lambda \ge 420 \text{ nm}$	20
	TEOA				(300 W Xe lamp)	
Re@TEB-BPY	/	CH ₃ CN/H ₂ O	2050 (CH ₄)	3.1	$\lambda \ge 400 \text{ nm}$	21
	TEA, BNAH			12h	(300 W Xe lamp)	
TFBD-COF-	[Ru(bpy) ₃]Cl ₂	CH ₃ CN	1480 (CO)	/	$\lambda \ge 420 \text{ nm}$	22
Co-SA	TEOA				(300 W Xe lamp)	
HOF-25-Re	[Ru(bpy) ₃]Cl ₂	CH ₃ CN	3030 (CO)	50.4	$\lambda \ge 420 \text{ nm}$	23
	TIPA			2h	(300 W Xe lamp)	
NiPc-CoPOP	[Ru(bpy) ₃]Cl ₂	² CH ₃ CN/H ₂ O	1942 (CO)	/	$\lambda \ge 400 \text{ nm}$	24
	TEOA				(White LED)	

13. References

- 1. Y. K. Zhang, L. Zhao, W. J. Xie, H. R. Li and L. N. He, *ChemSusChem*, 2024, 17, e202400090.
- S. Yang, W. Hu, X. Zhang, P. He, B. Pattengale, C. Liu, M. Cendejas, I. Hermans, X. Zhang, J. Zhang and J. Huang, *J. Am. Chem. Soc.*, 2018, 140, 14614-14618.
- M. Khrizanforov, S. Strekalova, V. Khrizanforova, V. Grinenko, K. Kholin, M. Kadirov, T. Burganov, A. Gubaidullin, T. Gryaznova, O. Sinyashin, L. Xu, D. A. Vicic and Y. Budnikova, *Dalton Trans*, 2015, 44, 19674-19681.
- 4. Y. Zhang, L. Cao, G. Bai and X. Lan, *Small*, 2023, **19**, 2300035.
- 5. F. Weigend and R. Ahlrichs, *Phys. Chem. Chem. Phys.*, 2005, 7, 3297-3305.
- 6. Z. Liu, T. Lu and Q. Chen, *Carbon*, 2020, **165**, 461-467.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, Williams, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman and D. J. Fox, *Journal*, 2016.
- 8. H. J. Kuhn, S. E. Braslavsky and R. Schmidt, Pure Appl. Chem., 2004, 76, 2105-2146.
- W. Zhong, R. Sa, L. Li, Y. He, L. Li, J. Bi, Z. Zhuang, Y. Yu and Z. Zou, J. Am. Chem. Soc., 2019, 141, 7615-7621.

- Z. Fu, X. Wang, A. M. Gardner, X. Wang, S. Y. Chong, G. Neri, A. J. Cowan, L. Liu, X. Li, A. Vogel, R. Clowes, M. Bilton, L. Chen, R. S. Sprick and A. I. Cooper, *Chem. Sci.*, 2020, 11, 543-550.
- Y. N. Gong, W. Zhong, Y. Li, Y. Qiu, L. Zheng, J. Jiang and H. L. Jiang, J. Am. Chem. Soc., 2020, 142, 16723-16731.
- 12. W. Liu, X. Li, C. Wang, H. Pan, W. Liu, K. Wang, Q. Zeng, R. Wang and J. Jiang, J. Am. Chem. Soc., 2019, 141, 17431-17440.
- T. Skorjanc, D. Shetty, M. E. Mahmoud, F. Gándara, J. I. Martinez, A. K. Mohammed, S. Boutros, A. Merhi, E. O. Shehayeb, C. A. Sharabati, P. Damacet, J. Raya, S. Gardonio, M. Hmadeh, B. R. Kaafarani and A. Trabolsi, *ACS Appl. Mater. Interfaces*, 2021, 14, 2015-2022.
- M. Lu, Q. Li, J. Liu, F.-M. Zhang, L. Zhang, J.-L. Wang, Z.-H. Kang and Y.-Q. Lan, *Appl. Catal.*, *B*, 2019, 254, 624-633.
- 15. L. Ran, Z. Li, B. Ran, J. Cao, Y. Zhao, T. Shao, Y. Song, M. K. H. Leung, L. Sun and J. Hou, *J. Am. Chem. Soc.*, 2022, **144**, 17097-17109.
- D. Song, W. Xu, J. Li, J. Zhao, Q. Shi, F. Li, X. Sun and N. Wang, *Chin. J. Catal.*, 2022, 43, 2425-2433.
- X. Wang, X. Ding, T. Wang, K. Wang, Y. Jin, Y. Han, P. Zhang, N. Li, H. Wang and J. Jiang, ACS Appl. Mater. Interfaces, 2022, 14, 41122-41130.
- Q. Zhang, S. Gao, Y. Guo, H. Wang, J. Wei, X. Su, H. Zhang, Z. Liu and J. Wang, *Nat. Commun.*, 2023, 14, 1147.
- W. Zhou, X. Wang, W. Zhao, N. Lu, D. Cong, Z. Li, P. Han, G. Ren, L. Sun, C. Liu and W.-Q. Deng, *Nat. Commun.*, 2023, 14, 6971.
- D. H. Streater, E. R. Kennehan, D. Wang, C. Fiankor, L. Chen, C. Yang, B. Li, D. Liu, F. Ibrahim, I. Hermans, K. L. Kohlstedt, L. Luo, J. Zhang and J. Huang, J. Am. Chem. Soc., 2024, 146, 4489-4499.
- 21. F. A. Rahimi, S. Dey, P. Verma and T. K. Maji, ACS Catal., 2023, 13, 5969-5978.
- 22. Y. Yang, Y. Lu, H.-Y. Zhang, Y. Wang, H.-L. Tang, X.-J. Sun, G. Zhang and F.-M. Zhang, *ACS Sustainable Chem. Eng.*, 2021, **9**, 13376-13384.
- B. Yu, L. Li, S. Liu, H. Wang, H. Liu, C. Lin, C. Liu, H. Wu, W. Zhou, X. Li, T. Wang, B. Chen and J. Jiang, *Angew. Chem. Int. Ed.*, 2021, 60, 8983-8989.
- 24. X. Y. Dong, Y. N. Si, Q. Y. Wang, S. Wang and S. Q. Zang, Adv. Mater., 2021, 33, 2101568.