Supplementary information

Recyclable HF-free $Ti_3C_2T_x$ 3D-printed supercapacitors: second life in sodium-ion batteries

Bindu Kalleshappa^a, Martin Pumera^{abc*}

^aFuture Energy and Innovation Laboratory, Central European Institute of Technology,

Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic.

^b Advanced Nanorobots & Multiscale Robotics Laboratory, Faculty of Electrical Engineering

and Computer Science, VSB - Technical University of Ostrava, 17. listopadu 2172/15, 70800

Ostrava, Czech Republic

^cDepartment of Medical Research, China Medical University Hospital, China

Medical University, No. 91 Hsueh-Shih Road, Taichung 40402, Taiwan

*Corresponding author

Table S1. The	e (0 0 2) position	and d-spacing	of $Ti_3C_2T_x$	Mxene	synthesised	using	different
techniques.							

Method	Etchant	Temperatur	Duratio	$(0 \ 0 \ 2)$	d-	c-LP	Referenc
		e	n	peak	spacin	(Å)	e
				positio	g(Å)		_
				n	6()		
Molten	CuCl ₂ :KCl:Na	680 °C	24	8.07°	10.94		1
Salt	Cl		hours				
Molten	CuCl ₂ :KCl:Na	700 °C	10 hour		11.07	22.1	2
Salt	Cl		: 10 min			3	
(Insitu							
preparatio							
n of MAX							
and							
etching)							
Molten	SnF ₂	550 °C	6 hours	9.4°			3
Salt							
Molten	CuCl ₂ :KCl:Na	700 °C	40 min	7.94°	11.1		4
Salt	Cl						
Acid	20% HF	Room	11	8.9 °			5
etching		temperatur	hours				
		e					
Insitu HF	6M HCl:LiF	40 °C	40	6.9°			6
etching			hours				
method							
HF	Conc. HF	Room	10	-	-	-	7
etching		temperatur	hours				
		e					
Wet-	Fluoride salts	Room			12 to		8
etching		Temperatur			15		
alkalizatio		e					
n strategy							
Acid	HF	Room	24	9°	19.62		9
solution		temperatur	hours				
etching		e					
Acid	LiF:HC1	60 °C	50	7.67°	22.05		9
solution			hours				
etching							
Acid	FeF ₃ :HCl	60 °C	25	8.01°	23.02		9
solution			hours				
etching							
Molten	KF:NaF:oxalic	400 °C	10	6.9		25.7	This
Salt	acid dihydrate		hours			2	work

Figure S1. SEM images of MSTC-00 at different magnifications.

Figure S2. High resolution XPS of (A) Ti 2p, (B) Al 2p, (C) C 1s and (D) O 1s of Ti_3AlC_2 MAX phase.

Figure S3. High resolution XPS of (A) Ti 2p, (B) Al 2p, (C) C 1s and (D) O 1s of MSTC-00.

Figure S4. (A) Nyquist plots and (B) cyclic voltammograms of (a) commercial Ti_3C_2 and (b) MSTC-OX.

Figure S5. SEM images of (A) activated 3DE and (B) TC-3DE. (C) Bode plots of TC-3DE (inset: equivalent circuit), and (D) current density versus scan rate curves of TC-3DE in 1 M H₂SO₄ against Ag/AgCl (3M KCl).

Figure S6. (A) log *i* versus log v curves of TC-3DE supercapacitors and (B) cyclic voltammograms of symmetric TC-3DE cell for 5000 cycles (cycle (a) 2^{nd} , (b) 500^{th} , (c) 1000^{th} , (d) 5000^{th} .

Material	Electrolyte	Specific	Energy	Power	Reference
	(Gel)	capacity	Density	density	
$2D Ti_3C_2T_x$	PVA/H ₂ SO	1 F cm ⁻² at	56 mW h	24.9 W cm ⁻	10
microsupercapcitor	4	2mV S ⁻¹	cm ⁻³	3,	
MSC-1					
3D Printed $Ti_3C_2T_x$	PVA/H ₂ SO	70 Fg ⁻¹ at 1	101 µWh	0.299 mW	11
MXene/Cellulose	4	mA cm ^{-2}	cm^{-2}	cm^{-2}	
Nanofiber					
$Ti_3C_2T_x$ coated	Li-	908 mF/g ⁻¹			12
carbon nanofiber	G3]TFSI	at			
structural		0.5 mA g^{-1}			
supercapcitors					
WCF-ZnCoSe-		14.55 F g ⁻¹	2.02 Wh	36.75 Wkg ⁻	13
Mxene			kg ⁻¹	1	
WCF-		19.36 F g ⁻¹	2.69 Wh	43.20 Wkg ⁻	13
N@ZnCoSe-			kg ⁻¹	1	
mxene					
MXene@PTC-12	PVA/H ₂ SO				14
h	4				
TC-3DE	Xanthan	30 Fg ⁻¹	1.767	20.64 Wkg-	This work
supercapacitors	gum/H ₂ SO ₄		Whkg ⁻¹	1	

Table S2. Performance of 3D printed $Ti_3C_2T_x$ based supercapacitors.

Figure S7. Cyclic voltammograms of sodium composite in (a) $1M H_2SO_4$ and (b) recycled 1M sodium lactate. (B) photograph of a glucometer powered up using SIB-a cells.

Figure S8. (A) XRD pattern, (B) SEM image of 3DE-CB (carbon black extracted from fresh PLA/Graphene filament). (C) Nyquist plot and (D) GCD curves (at 0.3C rate) of SIB-c cells.

Figure S9. GCD curve of (A) SIB-a and (B) SIB-b cells for 500 cycles at 1C-rate.

References

(1) Liu, L.; Orbay, M.; Luo, S.; Duluard, S.; Shao, H.; Harmel, J.; Rozier, P.; Taberna, P.-L.; Simon, P. Exfoliation and Delamination of Ti3C2Tx MXene Prepared via Molten Salt Etching Route. *ACS Nano* **2022**, *16* (1), 111-118. DOI: 10.1021/acsnano.1c08498.

(2) Ma, G.; Shao, H.; Xu, J.; Liu, Y.; Huang, Q.; Taberna, P.-L.; Simon, P.; Lin, Z. Li-ion storage properties of two-dimensional titanium-carbide synthesized via fast one-pot method in air atmosphere. *Nature Communications* **2021**, *12* (1), 5085. DOI: 10.1038/s41467-021-25306-y.

(3) Arole, K.; Blivin, J. W.; Saha, S.; Holta, D. E.; Zhao, X.; Sarmah, A.; Cao, H.; Radovic, M.; Lutkenhaus, J. L.; Green, M. J. Water-dispersible Ti3C2Tz MXene nanosheets by molten salt etching.

iScience **2021**, *24* (12), 103403. DOI: <u>https://doi.org/10.1016/j.isci.2021.103403</u>. (4) Chen, J.; Jin, Q.; Li, Y.; Shao, H.; Liu, P.; Liu, Y.; Taberna, P.-L.; Huang, Q.; Lin, Z.; Simon, P. Molten Salt-Shielded Synthesis (MS3) of MXenes in Air. *ENERGY & ENVIRONMENTAL MATERIALS* **2023**, *6* (2), e12328. DOI: <u>https://doi.org/10.1002/eem2.12328</u>.

(5) Wang, G.; Yang, Z.; Wu, L.; Wang, J.; Liu, X. Studies on improved stability and electrochemical activity of titanium carbide MXene-polymer nanocomposites. *Journal of Electroanalytical Chemistry* **2021**, *900*, 115708. DOI: <u>https://doi.org/10.1016/j.jelechem.2021.115708</u>.

(6) Saha, S.; Arole, K.; Radovic, M.; Lutkenhaus, J. L.; Green, M. J. One-step hydrothermal synthesis of porous Ti3C2Tz MXene/rGO gels for supercapacitor applications. *Nanoscale* **2021**, *13* (39), 16543-16553, 10.1039/D1NR02114A. DOI: 10.1039/D1NR02114A.

(7) Syamsai, R.; Kollu, P.; Kwan Jeong, S.; Nirmala Grace, A. Synthesis and properties of 2D-titanium carbide MXene sheets towards electrochemical energy storage applications. *Ceramics International* **2017**, *43* (16), 13119-13126. DOI: <u>https://doi.org/10.1016/j.ceramint.2017.07.003</u>.

(8) Xu, Z.; Zhang, Y.; Liu, M.; Meng, Q.; Shen, C.; Xu, L.; Zhang, G.; Gao, C. Two-dimensional titanium carbide MXene produced by ternary cations intercalation via structural control with angstrom-level precision. *iScience* **2022**, *25* (12), 105562. DOI: <u>https://doi.org/10.1016/j.isci.2022.105562</u>.

(9) Wang, X.; Garnero, C.; Rochard, G.; Magne, D.; Morisset, S.; Hurand, S.; Chartier, P.; Rousseau, J.; Cabioc'h, T.; Coutanceau, C.; et al. A new etching environment (FeF3/HCl) for the synthesis of two-dimensional titanium carbide MXenes: a route towards selective reactivity vs. water. *Journal of Materials Chemistry A* **2017**, *5* (41), 22012-22023, 10.1039/C7TA01082F. DOI: 10.1039/C7TA01082F.
(10) Orangi, J.; Hamade, F.; Davis, V. A.; Beidaghi, M. 3D Printing of Additive-Free 2D Ti3C2Tx (MXene) Ink for Fabrication of Micro-Supercapacitors with Ultra-High Energy Densities. *ACS Nano* **2020**, *14* (1), 640-650. DOI: 10.1021/acsnano.9b07325.

(11) Zhou, G.; Li, M.-C.; Liu, C.; Wu, Q.; Mei, C. 3D Printed Ti3C2Tx MXene/Cellulose Nanofiber Architectures for Solid-State Supercapacitors: Ink Rheology, 3D Printability, and Electrochemical Performance. *Advanced Functional Materials* **2022**, *32* (14), 2109593. DOI: https://doi.org/10.1002/adfm.202109593.

(12) Dharmasiri, B.; Usman, K. A. S.; Qin, S. A.; Razal, J. M.; Tran, N. T.; Coia, P.; Harte, T.; Henderson, L. C. Ti3C2Tx MXene coated carbon fibre electrodes for high performance structural supercapacitors. *Chemical Engineering Journal* 2023, *476*, 146739. DOI: <u>https://doi.org/10.1016/j.cej.2023.146739</u>.
(13) Deka, B. K.; Hazarika, A.; Kang, G.-H.; Hwang, Y. J.; Jaiswal, A. P.; Chan Kim, D.; Park, Y.-B.; Park, H. W. 3D-Printed Structural Supercapacitor with MXene-N@Zn-Co Selenide Nanowire Based Woven Carbon Fiber Electrodes. *ACS Energy Letters* 2023, *8* (2), 963-971. DOI: 10.1021/acsenergylett.2c02505.

(14) Zhu, G.; Hou, Y.; Lu, J.; Zhang, H.; Zhuang, Z.; Baig, M. M.; Khan, M. Z.; Akram, M. A.; Dong, S.; Liu, P.; et al. MXene decorated 3D-printed carbon black-based electrodes for solid-state microsupercapacitors. *Journal of Materials Chemistry A* **2023**, *11* (46), 25422-25428, 10.1039/D3TA04573K. DOI: 10.1039/D3TA04573K.