Supporting Information

Piezoelectricity in Excess of 30 pC/N with a High Curie Temperature of 950 °C in

the Strong Textured CaBi₂Nb₂O₉ Ceramics

Xiaogang Luo^{a, b}, Mengsi Wang^a, Xi Yuan^b, Yan Zhang^a, Xuefan Zhou^{a, *}, Hang Luo

^{*a,* *}, Dou Zhang^{*a*}

^a State Key Laboratory of Powder Metallurgy, Central South University, Changsha

410083, China.

^b College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China.

* Corresponding authors

Xuefan Zhou: zhouxuefan@csu.edu.cn

Hang

Luo:

Hangluo@csu.edu.cn

S1 (a-h) The SEM-EDS element mappings of CBNNS-0.025 templates.

S2 (a-c) The SEM images of T5, T15, and T20 ceramics. (d-f) The EBSD images of T5, T15, and T20 ceramics (the insets in the left bottom of EBSD images are their inverse pole figures, respectively).

S3 (a) P-E and (b) I-E hysteresis loops of T0-T20 ceramics.

S4 (a) Variation of ε_r and tand as a function of temperature for the T5, T15, and T20 ceramics (Insets show the locally enlarged view of the ε_r -T and tand-T curves). (b) T_C as a function of template content for the T0-T20 ceramics. (c) tand at 500 °C as a function of template content for the T0-T20 ceramics.

S5 (a-c) The variation of DC resistivity ρ with temperature for T5, T15, and T20 ceramics. (d-e) The variation of in situ d_{33} of T5, T15, and T20 ceramics as a function of temperature.

S6 The variation of DC resistivity ρ at 500 °C with temperature for T0 and T10 ceramics.