Supplementary Information (SI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2025

Supporting Information for

Theoretical prediction of efficient Cu-based dual-atom alloy catalysts for

electrocatalytic nitrate reduction to ammonia via high-throughput first-principles

calculations

Yuanyuan Wang^a, Chunmei Tang^{a,b*}, Qianlin Li^a, Ting Xiao^a, Fujian Xiong^a

a College of Mechanics and Engineering Science, Hohai University, Nanjing 210098,

PR China

b National Laboratory of Solid State Microstructures, Nanjing University,

Nanjing 210093, PR China

^{*}Corresponding author. E-mail: <u>tcmnj@163.com</u> (C. Tang)

Species	$E_{\rm ZPE}({ m eV})$	TS (eV)
*NO ₃	0.40	0.27
*NO ₃ H	0.62	0.27
*NO ₂	0.27	0.18
*NO ₂ H	0.54	0.18
*OH+*NO ₂	0.62	0.27
2*OH+*NO	0.92	0.25
*OH+*NO	0.53	0.20
*OH+*NOH	0.82	0.23
*NO-end	0.18	0.13
*NO-side	0.17	0.11
*NOH	0.45	0.17
*HNO	0.48	0.12
*N	0.08	0.03
*NH	0.38	0.04
*NH ₂	0.68	0.09
*NH ₃	1.00	0.14
*HNOH	0.77	0.18
*OH+*NH	0.72	0.16
*OH+*NH ₂	1.06	0.15
*OH+*NH ₃	1.37	0.22
*OH	0.34	0.08
2*OH	0.69	0.19
*N ₂ O ₂	0.36	0.23
N_2O_2H	0.70	0.23
*N ₂ O	0.26	0.21
*N ₂ OH	0.56	0.18
*N ₂	0.17	0.22

Table S1. The zero-point energy corrections (ΔE_{ZPE}) and entropic contributions ($T\Delta S$) (at 298.15 K) to the free energies of the key intermediates

Species	$E_{\rm ZPE}~({\rm eV})$	TS (eV)
HNO ₃ (g)	0.70	0.83
HNO ₂ trans(g)	0.53	0.77
$NO_2(g)$	0.23	0.74
NO(g)	0.12	0.65
NH ₃ (g)	0.89	0.60
$H_2(g)$	0.27	0.40
$H_2O(g)$	0.56	0.67
$N_2(g)$	0.15	0.58
$N_2O(g)$	0.29	0.68

Table S2. The zero-point energy corrections (ΔE_{ZPE}) and entropic contributions ($T\Delta S$) (at 298.15 K) to the free energies of the relevant molecules.

Table S3. The key parameters of the TM₂Cu systems: formation energy (E_{form}) and binding energy (E_{b}) of the TM₂Cu systems, average net charge (ΔQ) of the TM dimers, distance ($d_{\text{TM-TM}}$) between the embedded TM dimer, distance ($d_{\text{TM-Cu}}$) between the embedded TM atom and its bonded Cu atoms.

TM ₂ Cu	$E_{\rm form}({\rm eV})$	$E_{\rm b}({\rm eV})$	$\Delta Q(\mathbf{e})$	$d_{\mathrm{TM-TM}}(\mathrm{\AA})$		G	l _{TM-Cu} (Å	.)	
Sc ₂ Cu	0.94	-11.61	-2.00	2.85	2.66	2.59	2.49	2.59	2.68
Ti ₂ Cu	0.07	-12.45	-1.51	2.44	2.58	2.59	2.59	2.60	2.58
V ₂ Cu	-0.64	-11.75	-0.79	1.81	2.53	2.71	2.83	2.71	2.53
Cr ₂ Cu	0.29	-8.87	-0.73	2.68	2.60	2.53	2.49	2.53	2.60
Mn ₂ Cu	-0.18	-9.14	-0.59	2.65	2.56	2.53	2.49	2.53	2.57
Fe ₂ Cu	-0.30	-11.12	-0.29	2.28	2.50	2.57	2.62	2.57	2.50
Co ₂ Cu	-0.50	-11.51	-0.08	2.31	2.49	2.55	2.60	2.55	2.49
Ni ₂ Cu	0.01	-11.65	0.09	2.52	2.52	2.52	2.52	2.52	2.52
Zn ₂ Cu	0.10	-5.66	-0.18	2.59	2.55	2.52	2.51	2.53	2.55
Y ₂ Cu	1.35	-11.48	-1.29	3.12	2.84	2.71	2.57	2.71	2.85
Zr ₂ Cu	0.43	-14.90	-1.03	2.67	2.67	2.63	2.56	2.63	2.67
Nb ₂ Cu	-0.78	-15.59	-0.62	2.29	2.62	2.65	2.66	2.65	2.61
Mo ₂ Cu	-2.11	-13.73	-0.53	1.85	2.61	2.74	2.85	2.72	2.61
Ru ₂ Cu	-0.47	-14.97	0.09	2.36	2.58	2.57	2.60	2.55	2.56
Rh ₂ Cu	0.16	-14.25	0.30	2.55	2.58	2.54	2.53	2.53	2.57
Pd ₂ Cu	0.14	-11.63	0.33	2.63	2.60	2.54	2.51	2.54	2.60
Ag ₂ Cu	0.09	-8.39	0.11	2.65	2.65	2.58	2.53	2.58	2.65
Cd ₂ Cu	0.23	-4.59	-0.18	2.78	2.72	2.63	2.58	2.63	2.72
Hf ₂ Cu	0.56	-15.15	-2.38	2.74	2.63	2.59	2.51	2.59	2.65
Ta ₂ Cu	-0.46	-17.65	-1.20	2.42	2.60	2.62	2.60	2.62	2.60
W ₂ Cu	-1.35	-15.76	-0.55	2.26	2.58	2.62	2.66	2.62	2.58
Re ₂ Cu	-1.36	-14.67	-0.13	2.30	2.58	2.59	2.64	2.58	2.57
Os ₂ Cu	-0.81	-16.38	0.23	2.39	2.57	2.56	2.59	2.55	2.57
Ir ₂ Cu	0.01	-17.02	0.49	2.52	2.57	2.54	2.54	2.53	2.57
Pt ₂ Cu	0.19	-13.53	0.58	2.63	2.59	2.54	2.51	2.54	2.59
Au ₂ Cu	0.19	-10.51	0.43	2.68	2.64	2.56	2.52	2.56	2.63
Cu(111)			0.02	2.52	2.52	2.52	2.52	2.52	2.52

Table S4. The key parameters of NO₃⁻ adsorption on the TM₂Cu systems: distance between the O atoms in *NO₃ and its bonded TM atoms, $d(M-O^*)$; adsorption free energy of NO₃⁻, $\Delta G(*NO_3)$; net charge of the *NO₃, $\Delta Q(*NO_3)$; net charge of TM dimer with adsorption of NO₃⁻, $\Delta Q(TM-*NO_3)$.

TM ₂ Cu	<i>d</i> (M-*O) (Å)	$\Delta G(*NO_3)$ (eV)	$\Delta Q(*NO_3)$ (e)	$\Delta Q(\text{TM-*NO}_3)(e)$
V ₂ Cu	1.96, 1.96	-1.51	0.87	-0.54
Mn ₂ Cu	2.00, 1.99	-0.89	0.79	-0.44
Fe ₂ Cu	1.96, 1.96	-0.89	0.77	-0.50
Co ₂ Cu	1.96, 1.96	-0.64	0.74	-0.48
Nb ₂ Cu	2.07, 2.07	-1.07	0.70	-0.54
Mo ₂ Cu	2.08, 2.08	-1.60	0.87	-0.72
Ru ₂ Cu	2.10, 2.10	-0.64	0.67	-0.38
Ta ₂ Cu	2.04, 2.04	-2.06	1.14	-0.88
W ₂ Cu	2.01, 2.01	-2.21	1.05	-0.96
Re ₂ Cu	2.05, 2.05	-1.40	0.85	-0.82
Os ₂ Cu	2.11, 2.11	-0.60	0.69	-0.66
Cu111	2.03, 2.03	0.02	0.70	-0.10

Table S5. The key parameters of H atoms adsorption on the TM₂Cu systems: distance between the H atoms and TM dimers or Cu atoms, Δd (TM/Cu-H*); adsorption free energy of H atoms, ΔG (*H); net charge of the *H, ΔQ (*H); net charge of TM dimer with adsorption of H, ΔQ (TM-*H).

TM ₂ Cu	$\Delta d(TM/Cu-*H)$ (Å)	$\Delta G(*H) (eV)$	$\Delta Q(*H)$ (e)	$\Delta Q(\text{TM-*H})(e)$
V ₂ Cu	1.85, 1.86, 1.81	-0.43	0.53	-0.45
Mn ₂ Cu	1.81, 1.81, 1.77	-0.38	0.49	-0.28
Fe ₂ Cu	1.73, 1.73, 1.82	-0.44	0.41	-0.26
Co ₂ Cu	1.69, 1.68, 1.83	-0.47	0.33	-0.19
Nb ₂ Cu	1.90, 1.90,	-0.59	0.44	-0.46
Mo ₂ Cu	1.92, 1.92,	-0.12	0.46	-0.19
Ru ₂ Cu	1.82, 1.82, 1.90	-0.34	0.28	-0.18
Ta ₂ Cu	1.90, 1.90,	-0.87	0.82	-0.80
W ₂ Cu	1.86, 1.86,	-0.58	0.56	-0.59
Re ₂ Cu	1.90, 1.90,	-0.40	0.37	-0.33
Os ₂ Cu	1.82, 182,	-0.34	0.24	-0.22
Cu111	1.73, 1.73, 1.74	-0.18	0.27	-0.08

TM ₂ Cu	$U_{\rm L}\left({ m V} ight)$	Limiting step
V ₂ Cu	-0.73	$*OH+*NH_3 \rightarrow *NH_3$
Mn ₂ Cu	-0.18	*NO \rightarrow *NOH
Fe ₂ Cu	-0.30	*NO \rightarrow *NOH
Co ₂ Cu	-0.28	*NO \rightarrow *NOH
Nb ₂ Cu	-0.80	$^{*}\mathrm{OH}\text{+}^{*}\mathrm{NH}_{3} \rightarrow ^{*}\mathrm{NH}_{3}$
Mo ₂ Cu	-0.76	$^{*}\mathrm{OH}\text{+}^{*}\mathrm{NH}_{3} \rightarrow ^{*}\mathrm{NH}_{3}$
Ru ₂ Cu	-0.46	*NO \rightarrow *NOH
Ta ₂ Cu	-1.48	$*OH+*NH_3 \rightarrow *NH_3$
W ₂ Cu	-1.30	$*OH+*NH_3 \rightarrow *NH_3$
Re ₂ Cu	-0.78	$*OH+*NH_3 \rightarrow *NH_3$
Os ₂ Cu	-0.57	*NO \rightarrow *NOH
Cu(111)	-0.38	$*NO_2 \rightarrow *NO_2H$

Table S6. The calculated values of U_L and corresponding potential-determining step (PDS) for eNO₃RR on TM₂Cu systems.

Fig. S1. (a) The atom configurations of $4 \times 4 \times 4$ supercell of the pristine Cu(111) slab, with the bottom two layers were fixed. (b) The total densities of states (TDOS) of the pristine Cu(111) slab.

Fig. S2. The sites of TM bonding with Cu atoms, and d_1 , d_2 , d_3 , d_4 and d_5 corresponding to the values of $d_{\text{TM-Cu}}$ in Table S3, respectively.

Fig. S3. The total densities of states (TDOS) of the screened TM₂Cu systems.

Fig. S4. (a) The considered adsorption sites of NO_3^- adsorbed on screened TM₂Cu catalysts, b₁, b₂, b₃, b₄, and t represent different bridge site and top site respectively. (b) The considered adsorption sites of H atom adsorbed on screened TM₂Cu catalysts, f₁, f₂ and f₃ represent different fcc site, respectively, h₁, h₂ and h₃ represent different hollow site, respectively.

Fig. S5. The initial and optimized structures of several possible NO_3^- adsorption on Mn_2Cu catalyst.

Fig. S6. The most stable adsorption configurations of H atoms on screened TM₂Cu catalysts.

Fig. S7. The all possible reaction pathway on Mn_2Cu catalyst, which contain the optimized reaction intermediate structures and free energy changes in each elementary step. The green pathway contains the most stable configurations of the overall reaction, while the other color pathways along relatively unstable structures.

Fig. S8. Free energy diagram and the configurations of corresponding intermediates for the eNO₃RR on MnCu, FeCu, and CoCu SAA catalysts.

Fig. S9. Free energy diagram and the configurations of corresponding intermediates for the eNO₃RR on pristine Cu(111).

Fig. S10. Free energy diagram and the configurations of corresponding intermediates for the eNO_3RR on V_2Cu .

Fig. S11. Free energy diagram and the configurations of corresponding intermediates for the eNO₃RR on Fe₂Cu.

Fig. S12. Free energy diagram and the configurations of corresponding intermediates for the eNO₃RR on Nb₂Cu.

Fig. S13. Free energy diagram and the configurations of corresponding intermediates for the eNO₃RR on Mo₂Cu.

Fig. S14. Free energy diagram and the configurations of corresponding intermediates for the eNO₃RR on Ru₂Cu.

Fig. S15. Free energy diagram and the configurations of corresponding intermediates for the eNO₃RR on Ta₂Cu.

Fig. S16. Free energy diagram and the configurations of corresponding intermediates for the eNO₃RR on W₂Cu.

Fig. S17. Free energy diagram and the configurations of corresponding intermediates for the eNO₃RR on Re₂Cu.

Fig. S18. Free energy diagram and the configurations of corresponding intermediates for the eNO₃RR on Os₂Cu.

Fig. S19. (a) The considered adsorption sites and initial configurations of *N₂O₂ on TM₂Cu.
(b)The most stable adsorption configuration of *N₂O₂ on Mn₂Cu, Fe₂Cu and Co₂Cu.

Fig. S20. (a) eNO₃RR free energy diagram along the optimal reaction path at different pH conditions for Cu(111). (b) eNO₃RR free energy diagram along the optimal reaction path at applied potentials for Cu(111). (c) The competitive relationship of $\Delta G(*NO_3)$ and $\Delta G(*H)$ between eNO₃RR and HER in all pH region on Cu(111).

Fig. S21. Projected densities of states (PDOS) of the TM and O (in $*NO_3$) 2*p* states, which is bonded with the TM atom. The vertical dashed line denotes the position of Fermi level (E_f).

Fig. S22. The changes of temperature and energy during the AIMD simulation lasting 20 ps for Fe₂Cu, the top and side view of final configurations for the AIMD simulation are displayed.