Incorporating high acidity cation on Co-free BiFeO₃-based air

electrodes for enhancing electrocatalytic activity and durability in

reversible solid oxide cells

Shun Wang^a, Wen Jiang^a, Yifeng Zheng^{b*} ^a College of Ceramics, Wuxi Vocational Institute of Arts & Technology, No. 99 South Jingyi Road, Yixing, 214200, Jiangsu, China ^b College of Materials Science and Engineering, Nanjing Tech University, No. 30 Puzhu Road(S), Nanjing, 211816, Jiangsu, China

* Corresponding author.

Email address: zhengyifeng@njtech.edu.cn (Y. Zheng)

Fig.S1 ECR curves of (a)BCFTi_{0.05} and (b) BCFTi_{0.15} samples measured from 550 to 700 °C with an oxygen partial pressure changed from 0.1 to 0.21 atm.

Fig. S2 EPR spectra of BCF and $BCFTi_{0.1}$ powders

Fig.S3 EIS plots of (a) $BCF_{0.05}$ and (b) $BCFTi_{0.15}$ symmetrical cells measured at 550-700 °C in air; (c) The Rp values for BCFTix cathodes measured at 550-700 °C in air.

Fig.S4 (a)R_{HF} and (b)R_{LF} of BCF and BCFTi_{0.1} cells on different pO_2 at 700 °C.

Fig. S5 SEM images of (a)Ni-YSZ/YSZ/GDC/BCFTi_{0.1} single cell, (b) BCFTi_{0.1} electrode surface morphology; EDS results of BCFTi_{0.1} electrode (c) Bi, (d)Fe, (e)Ca and (f)Ti.

Fig.S6 Continuous cyclical operation between the SOFC mode (at 0.8 V) and the SOEC mode (at 1.3 V) at 700°C for BCF single cell.

Fig. S7 EIS of the $BCFTi_{0.1}$ single cell before and after the continuous cyclical operation.

	1	n 50()		1		
Samples	Space group	a=b=c	ωRp	Rp	χ^2	
BCF	Pm-3m	3.91689	8.14	5.23	4.56	
BCFTi _{0.05}	Pm-3m	3.91365	4.21	2.33	2.83	
BCFTi _{0.1}	Pm-3m	3.92097	7.82	5.63	3.08	
BCFTi _{0.15}	Pm-3m	3.92724	6.89	3.44	3.47	
						-

Table S1 Lattice parameters of BCFTi_xO_{3-δ} (x=0, 0.05, 0.1, 0.15) samples

Table S2 Comparison of the Rp values of symmetrical cells with various Fe-based or Co-based perovskite materials measured at 700 °C in air

Cathode	Electrolyte (µm)	Rp values (Ω	Reference
		cm^2)	
BCFTi _{0.1}	GDC(~500)	0.064	This work
$Pr_{0.2}Ba_{0.2}Sr_{0.2}La_{0.2}Ca_{0.2}CoO_{3-\delta}$	LSGM (250)	~0.08	1
$Sr_{0.5}Bi_{0.5}FeO_{3-\delta}$	GDC(300)	~0.25	2
$Sr_{0.5}Bi_{0.4}Ca_{0.1}FeO_{3-\delta}$	GDC(300)	0.13	2
$Bi_{0.5}Sr_{0.5}Fe_{0.85}Ti_{0.15}O_{3\text{-}\delta}$	GDC(~300)	0.085	3
$Sm_2Ba_3Co_2Fe_3O_{15-\delta}$	LSGM (~280)	0.06	4
$SmBaCo_{0.8}Fe_{1.2}O_{5+\delta}$	LSGM (~280)	0.108	4
$SrCo_{0.8}Ti_{0.2}O_{3-\delta}$	LSGM(~200)	~0.062	5
$Bi_{0.5}Sr_{0.5}FeO_{3-\delta}-Ce_{0.9}Gd_{0.1}O_{1.95}(7:3)$	GDC(300)	0.14	6
$(La_{0.6}Sr_{0.4})_{0.95}Co_{0.2}Fe_{0.8}O_{3-\delta}$	LSGM (250)	0.091	7
$SmBaFe_2O_{5+\delta}$	LSGM (~270)	0.154	8

1	0 1	0		
Air	Fuel	MPD (W cm ⁻²)	Current density (A cm ⁻²)	Reference
Electrode	electrode/electrolyte			
BCFTi _{0.1}	Ni-YSZ/YSZ/GDC	1.03 (700 °C)	0.9 (700 °C, 70 H ₂ O:30	This
			H ₂ , 1.3V)	work
PCFC	Ni-YSZ/YSZ/GDC	0.493 (700 °C)	0.79 (750 °C, 50 H ₂ O:50	9
			H ₂ , 1.3V)	
LSFN-	Ni-YSZ/YSZ/GDC	0.729 (750 °C)	0.53 (750 °C, 50 H ₂ O:50	10
GDC			H ₂ , 1.3V)	
RP-	NiO-3YSZ-	0.8 (700 °C)	0.76 (700 °C, 60 H ₂ O:40	11
LSCFNM	8YSZ NiO-		H ₂ , 1.3V)	
С	8YSZ 8YSZ GDC			
RP-LSC	NiO-3YSZ-	0.57 (700 °C)	0.65 (700 °C, 60 H ₂ O:40	11
	8YSZ NiO-		H ₂ , 1.3V)	
	8YSZ 8YSZ GDC			
BSFTF10	Ni-YSZ/YSZ/GDC	0.497 (700 °C)	0.958 (700°C, 70	12
			CO ₂ :30CO, 1.5V)	
LSFN	Ni-YSZ/YSZ/GDC	0.4 (700 °C)	0.32 (700 °C, 50 CO ₂ :50	13
			H ₂ , 1.3V)	
LSCF-SN	Ni-YSZ/YSZ/SNDC	1.13 (700 °C)	1.37 (750 °C, 50 H ₂ O:50	14
DC			H ₂ , 1.3V)	
LBSNF-	Ni-YSZ/YSZ/GDC	0.418 (700 °C)	0.36 (700 °C, 50 H ₂ O:50	15
GDC			H ₂ , 1.3V)	
NCBC2	Ni-YSZ/YSZ/GDC	~0.8 (700 °C)	0.81 (800 °C, 70	16
			CO ₂ :30H ₂ , 1.5V, single	
			cell configuration:	
			NCBC2/LSGM/SFM-	
			SDC)	

Table S3 Comparison in electrochemical performance (FC and EC mode) of $BCFTi_{0.1}$ single cell with reported high-performance cells using Co-based or Fe-based air electrodes

Reference:

1 He, F.; Zhu, F.; Liu, D.; Zhou, Y.; Sasaki, K.; Choi, Y.; Liu, M.; Chen, Y. *Mater. Today*, 2023, **63**, 89-98.

2 Gao, J.; Liu, Y.; Xia, T.; Sun, L.; Zhao, H.; Wei, B.; Li, Q. Sep. Purif. Technol., 2023, 311, 123267.

3 Gao, J.; Li, Q.; Xia, W.; Sun, L.; Huo, L.-H.; Zhao, H. ACS Sustainable Chem. Eng., 2019, 7, 18647-18656.

- 4 Sun, Z.; Shen, Z.; Du, Z.; Zhang, Y.; Gong, Y.; Zhang, M.; Wang, K.; Świerczek, K.; Zeng, J.; Zhao, H. Adv. Funct. Mater., 2024, 34, 2403312.
- 5 Dang, X.; Li, T.; Jiang, Y.; Gao, Z.; Hua, Y.; Su, H. J. Power Sources, 2024, 603, 234448.
- 6 Gao, J.; Li, Q.; Guo, M.; Sun, L.; Huo, L.; Zhao, H. Ceram. Int., 2021, 47, 748-754.
- 7 Zhu, F.; He, F.; Xu, K.; Chen, Y. Sci. China Mater., 2022, 65, 3043-3052.
- 8 Zhang, M.; Du, Z.; Sun, Z.; Zhao, H. J. Mater. Chem. A, 2023, 11, 21645-21654.
- 9 Li, Y.; Tian, Y.; Li, J.; Pu, J.; Chi, B. J. Power Sources, 2022, 528, 231202.
- 10 Tian, Y.; Wang, W.; Liu, Y.; Zhang, L.; Jia, L.; Yang, J.; Chi, B.; Pu, J.; Li, J. ACS Appl. Energy Mater., 2019, **2**, 3297-3305.
- 11 Li, X.; Chen, T.; Wang, C.; Sun, N.; Zhang, G.; Zhou, Y.; Wang, M.; Zhu, J.; Xu, L.; Wang, S. *Adv. Funct. Mater.*, 2024, 2411216.
- 12 Ye, H.; Feng, Y.; Shan, P.; Qian, B.; Ge, L.; Chen, H.; Zheng, Y. Chem. Eng. J., 2024, 499, 156105.
- 13 Guan, C.; Wang, Y.; Chen, K.; Xiao, G.; Lin, X.; Zhou, J.; Song, S.; Wang, J.-Q.; Zhu, Z.; Zhou, X.-D. *Mater. Lett.*, 2019, 245, 114-117.
- 14 Park, J.H.; Jung, C.H.; Kim, K.J.; Kim, D.; Shin, H.R.; Hong, J.-E.; Lee, K.T. ACS Appl. Mater. Interfaces, 2021, 13, 2496-2506.
- 15 Zheng, G.; Zhang, G.; Liu, K.; Huang, Z.; Chen, T.; Zhou, J.; Wang, S. *Int. J. Hydrogen Energy*, 2023, **48**, 12571-12580.
- 16 Li, J.; Sun, N.; Liu, X.; Shen, Y.; Wang, F.; Li, J.; Shi, K.; Jin, F. J. Alloys Compd., 2022, 913, 165245.