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Fig. S1.  ML-driven gait-assisted advanced health monitoring system: From sensing to analysis.
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Fig. S2. Schematic of double replica molding for replicating the microstructured PTFE film.
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Fig. S3. (a)  Scanning electron microscopy (SEM) images, (b) Energy dispersive X-ray 
spectroscopy (EDX) of the PTFE film.
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Fig S4. (a)  Scanning electron microscopy (SEM) images, (b) Energy dispersive X-ray 
spectroscopy (EDX) of the nylon 6/6 nanofiber film.
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Fig. S5. Fourier transform infrared (FTIR) spectra of the PTFE and nylon 6/6 film.
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Fig. S6. Effect of the spacer layers on TENG output voltage (with force variations).
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Fig. S7. The linear motor setup with the TENG sensor (top view and side view).
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Fig. S8. Stability of the proposed TENG sensor across multiple days.
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Fig. S9. Response and recovery times of the TENG sensor.
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Fig. S10.   Normalized time ratio of a healthy human gait.
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Fig. S11. Confusion matrix for the normal arches from pes planus classification.
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Fig. S12. Extracted average durations (left heel data) for gait phase events for 4 persons (P1, P2, 
P3, and P4).
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Fig. S13. Left foot raw data for 25 gait cycles for (a) person P1, (b) person P2, (c) person P3, and 
(d) person P4.
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Fig. S14. Illustration of the random forest classifier machine learning model.
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Fig. S15. Confusion matrix for the 12 rehabilitation exercises (half squat R1, standing on tiptoes 
R2, standing on heels R3, lifting legs up from the front side (while standing) R4, lifting  legs up 
from the side direction (while standing) R5, lifting legs up from the rear side (while standing) R6, 
stepping leg up when sitting (on chair) R7, chair-assisted tiptoe squat down and standing up R8, 
chair sitting and standing with arms akimbo R9, standing lunges R10, stepping from the side 
directions R11, and walking on heels R12).
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Fig. S16. Actual images of the 12 rehabilitation exercises.
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Fig. S17. The left heel data for 12 rehabilitation exercises (half squat R1, standing on tiptoes R2, 
standing on heels R3, lifting legs up from the front side (while standing) R4, lifting  legs up from 
the side direction (while standing) R5, lifting legs up from the rear side (while standing) R6, 
stepping leg up when sitting (on chair) R7, chair-assisted tiptoe squat down and standing up R8, 
chair sitting and standing with arms akimbo R9, standing lunges R10, stepping from the side 
directions R11, and walking on heels R12).
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Fig. S18. The confusion matrix for 13 workout exercises (deep squat E1, mountain climbing E2, 
high knee E3, squat jacks E4, lateral lunges E5, rope jumping E6, walking up the stairs E7, walking 
down the stairs E8, burpee E9, jumping jacks E10, cross jumping E11, kicking hips E12, walking 
lunges E13).
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Fig. S19. Actual images of the 13 workout exercises.
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Fig. S20. The left heel data for 13 workout exercises (deep squat E1, mountain climbing E2, high 
knee E3, squat jacks E4, lateral lunges E5, rope jumping E6, walking up the stairs E7, walking 
down the stairs E8, burpee E9, jumping jacks E10, cross jumping E11, kicking hips E12, walking 
lunges E13)
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Supporting Note S1 : Random forest classifier

Random forest is an advanced ensemble learning method designed to enhance the performance of 
predictive models by aggregating the outputs of multiple models. This technique is applicable to 
both classification and regression problems within machine learning. The foundation of a random 
forest classifier lies in its ensemble of decision trees, which serve as the fundamental units or base 
learners. Decision trees operate as binary structures, where data is repeatedly partitioned based on 
specific feature values, ultimately culminating in leaf nodes that signify the model's final 
predictions.1,2 During the model training phase, each decision tree is constructed using a bootstrap 
sample—a randomly selected subset of data drawn with replacement from the original dataset as 
depicted in Fig. S14. This sampling strategy, combined with the presence of numerous trees, 
significantly reduces the risk of overfitting. Additionally, to introduce regularization, only a 
randomly chosen subset of features is evaluated at each decision point within the trees. This 
mechanism prevents any single tree from exerting undue influence on the ensemble's overall 
performance. For classification tasks, the random forest determines the final output by aggregating 
the majority of votes from individual trees. The algorithm's simplicity, adaptability, and 
effectiveness make it a popular choice. It is recognized for delivering high accuracy and being less 
susceptible to overfitting compared to standalone decision trees. 

User Identification:

The voltage signals generated by four users (U1, U2, U3, and U4) are collected at a sampling 
frequency of 250 kHz. For user identification, the dataset comprises 60,000 samples (15,000 per 
class), with each sample containing data from eight sensors (four sensors per foot). The dataset is 
randomly split into an 80:20 ratio for training and testing. A random forest ensemble model with 
15 estimators is trained on the training set, while the test set is utilized to evaluate model 
performance. 

Flat foot identification: A total of 20,000 samples (10,000 per class), with each sample containing 
data from eight sensors, are taken into consideration. The dataset is randomly split into a 90:10 
ratio for training and testing. A random forest ensemble model with 20 estimators is used for 
classification. 

Rehabilitation and athletic workout classification:

The datasets for 12 rehabilitation exercises and 13 athletic workout exercises consist of 60,000 and 
65,000 samples, respectively, with 5,000 samples per class. Each sample includes data from eight 
sensors evenly distributed between the left and right foot (four sensors per foot). Both datasets are 
randomly split into a 90:10 ratio, with 90% used for training and 10% for testing. A random forest 
ensemble model with 20 estimators is trained on the respective training sets, while the test sets are 
used to evaluate the classification performance.
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