Supplementary Information

Structure Engineering through Modulator Incorporation in UiO-66-NH₂ Metal-Organic Frameworks for Piezoresponse Regulation

Zhi Yu,^a Dingqi Wang, ^a Tian Zheng, ^b Ali Zavabeti, ^a Yongqiang Wang, ^a Chao Wu, ^a Jianing Yang, ^a Yalou Guo, ^c Paul A. Webley, ^{*ac} and Gang Kevin Li ^{*a}

^a Department of Chemical Engineering, The University of Melbourne, Parkville, Melbourne, VIC 3010, Australia
E-mail: <u>li.g@unimelb.edu.au</u>
^b Materials Characterisation and Fabrication Platform, Department of Chemical Engineering, The University of Melbourne, Parkville, Melbourne, VIC 3010, Australia
^c Department of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia
E-mail: <u>paul.webley@monash.edu</u>

1

1. Supplementary Text

Experimental Chemical Formula Calculation through TGA and NMR

To quantitively acquire the experimental dehydrated chemical formula of UiO-66-NH₂ (Zr, Hf) with different modulators, the details are discussed below, followed by a reported work¹.

First, the theoretical dehydrated chemical formula of UiO-66-NH₂ (Hf) is Hf₆O₆(BDC-NH₂)₆. Then, it undergoes the reaction through a heating process as follows: Hf₆O₆(BDC-NH₂)₆ (s) + O₂ (g) \rightarrow HfO₂ (s) + CO₂ (g) + NO₂ (g) + H₂O (g), where the only remaining solid is HfO₂. As 1 mol Hf₆O₆(BDC-NH₂)₆ produces 6 mol HfO₂ and the molar weight of Hf₆O₆(BDC-NH₂)₆ and HfO₂ are 2241.84 g/mol and 210.49 g/mol, the normalized weight of Hf₆O₆(BDC-NH₂)₆ can be calculated as 2241.84/ (6×210.49) \approx 177.5% if the final weight of HfO₂ is set as 100%. The contribution of one ligand molecule to the weight is calculated as (177.5%-100%)/6≈12.92%.

Meanwhile, the experimental dehydrated chemical formal with modulators can be noted as $Hf_6O_{6+x-y-z}(BDC-NH_2)_{6-x}(CH_3COO)_{2y}(HCOO)_{2z}$, where x, 2y, and 2z is the deficiency of BDC-NH₂²⁻, the incorporated AA⁻, and the incorporated FA⁻, respectively.

Take Hf/70 AA for example, its normalized weight at 300 °C is 161.80% from the TGA result, so we can obtain this equation: $6-x=(161.80\%-100\%)/12.92\%\approx4.78$ and x is 1.22. It is also acquired that the AA⁻/BDC-NH₂²⁻ and FA⁻/BDC-NH₂²⁻ ratio from NMR peak area is 0.11 and 0.06, then $2y=4.78\times0.11\approx0.53$ and $2z=4.78\times0.06\approx0.29$. Finally, the dehydrated chemical formal of Hf/70 AA is Hf₆O_{6.81}(BDC-NH₂)_{4.78}(CH₃COO)_{0.53}(HCOO)_{0.29}.

Similarly, the normalized weight of $Zr_6O_6(BDC-NH_2)_6$ can be calculated as 232.4% and one ligand contribution is 22.07%, consistent with the reported work². And its experimental dehydrated chemical formal with modulators can be noted as $Zr_6O_{6+x-y-z}(BDC-NH_2)_{6-x}(CH_3COO)_{2y}(HCOO)_{2z}$.

The calculated dehydrated chemical formulas of all samples are listed in Table 1.

2. Supplementary Figures

Figure S1. FTIR spectra of (a) UiO-66-NH₂ (Hf) and (b) UiO-66-NH₂ (Zr) with different amount of added AA.

Figure S2. NMR of pure AA and H_2BDC - NH_2 in 1M NaOH D_2O .

Figure S3. NMR spectra of (a) UiO-66-NH₂ (Hf) and (b) UiO-66-NH₂ (Zr) with 70 AA and 100 AA.

Figure S4. XRD patterns of (a) UiO-66-NH₂ (Hf) and (b) UiO-66-NH₂ (Zr) with 70 AA and 100 AA.

Figure S5. XPS survey spectra of (a) Hf/0 AA and (b) Zr/0 AA. (c) Hf 4f XPS peak of Hf/0 AA. (d) Zr 3d XPS peak of Zr/0 AA.

Figure S6. TEM and dark field images as well as the corresponding EDS elements mapping of (a) Hf/0 AA, (b) Hf/10 AA, and (c) Hf/40 AA.

Figure S7. TEM and dark field images as well as the corresponding EDS elements mapping of (a) Zr/0 AA, (b) Zr/10 AA, and (c) Zr/40 AA.

Figure S8. PFM bias waveform.

Figure S9. PFM bias-on state amplitude curves of (a) UiO-66-NH₂ (Hf) and (b) UiO-66-NH₂ (Zr) with different amount of added AA and (c-d) their corresponding PFM phase curves.

3. Supplementary Tables

	UiO-66-NH ₂ (Hf)				UiO-66-NH ₂ (Zr)				
	0 AA	10 AA	40 AA	70AA	0 AA	10 AA	40 AA	70AA	
Crystallinity (%)	72.5	78.4	80.3	79.1	73.9	80.1	79.9	81.6	

Table S1. Crystallinity of UiO-66-NH₂ (Hf, Zr) with Different Amount of Added AA.

 Table S2. Relative AA⁻/BDC-NH2²⁻ and FA⁻/BDC-NH2²⁻ Ratio of UiO-66-NH2 (Hf, Zr) with Different Amount of Added AA from NMR Peak Area.

	UiO-66-NH ₂ (Hf)				UiO-66-NH ₂ (Zr)			
Amount Ratio	0 AA	10 AA	40 AA	70AA	0 AA	10 AA	40 AA	70AA
AA ⁻ /BDC-NH ₂ ²⁻	0	0.05	0.09	0.11	0	0.08	0.14	0.18
FA ⁻ /BDC-NH ₂ ²⁻	0.04	0.04	0.05	0.06	0.04	0.05	0.05	0.07

Table S3. Atomic Percentage of (Hf, Zr)/70 AA.

				<u></u>	
Atomic Percentage (%)	Hf	Zr	C	Ν	0
UiO-66-NH ₂ (Hf)	5.41	/	51.88	8.22	34.49
UiO-66-NH ₂ (Zr)	/	7.5	52.15	6.38	33.96

Table S4. BET Surface Area, Micropore Volume, and Median Pore Width of UiO-66-NH2(Hf, Zr) with Different Amount of Added AA.

	UiO-66-NH ₂ (Hf)					UiO-66-NH ₂ (Zr)			
	0 AA	0 AA 10 AA 40 AA 70AA				10 AA	40 AA	70AA	
S_{BET} (m ² /g)	437.68	564.03	739.25	830.72	667.98	859.32	932.26	1,042.52	
$V_p (cm^3/g)$	0.1674	0.2244	0.3036	0.336	0.2668	0.3401	0.3645	0.4188	
$W_{p}(Å)$	7.23	7.03	7.07	7.53	7.08	7.26	7.30	7.40	

References

- G. C. Shearer, S. Chavan, S. Bordiga, S. Svelle, U. Olsbye and K. P. Lillerud, Chem. 1.
- *Mat.*, 2016, **28**, 3749-3761. G. Fang, J. N. Hu, L. C. Tian, J. X. Liang, J. Lin, L. Li, C. Zhu and X. Wang, *Angew. Chem. Int. Ed.*, 2022, **61**, e202205077. 2.