Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2024

Electronic Supplementary Information

Modulating Electrolyte Solvation Structure with Fe-Embedded Carbon Matrix Substrates for Robust Lithium-Metal Plating

Jiayue Peng, *a, b Jinghan Wang, b Xiangjun Pu, b and Jia Xie*a

^a State Key Laboratory of Advanced Electromagnetic Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China

^b Department of Materials Science and Engineering, Seoul National University, Seoul, Republic of Korea

* E-mails: xiejia@hust.edu.cn., jiayue_peng@hust.edu.cn

1. Experimental Section

1.1. Materials

Iron-1,3,5-benzenetricarboxylate (Fe-BTC, Basolite F-300), fluoroethylene carbonate (FEC, 99%), diethyl carbonate (DEC, >99%) and lithium bis(fluorosulfonyl)imide (LiFSI, 99.9%) were purchased from Sigma-Aldrich without further purification. FEC and DEC were dehydrated by 4 Å molecular sieves for at least 48h. LiFSI was dried at 90°C under vacuum oven over 24h.

1.2. Synthesis of Fe@C powder

Iron nanoparticles encapsulated in a porous carbon framework (denoted as Fe@C) were synthesized through the pyrolysis of Fe-BTC. Initially, Fe-BTC underwent an activation process at 150°C for 24 hours within a vacuum oven. Subsequently, this activated Fe-BTC powder was subject to an annealing procedure at 500°C for 4 hours under N₂ atmosphere, and the ramp rate was 2°C /min. Prior to exposure to the ambient environment, each sample was passivated at room temperature using a 5% O_2/N_2 mixture for 2 hours. Through this methodology, Fe-BTC underwent carbonization and reduction, resulting in the formation of the Fe@C composite.

1.3. Materials characterization

Powder X-ray diffraction spectra were obtained using a D2 PHASER (Bruker) equipped with CuK α radiation ($\lambda = 1.54178$ Å). SEM images were captured using a Zeiss Merlin High-resolution Scanning Electron Microscope operating at 3 kV. The SEM samples were ionic sputtered with a Pt layer to minimize charging effects. FTIR spectra were recorded on a PerkinElmer Spectrum Two FTIR spectrophotometer. XPS data were gathered using a Thermo Scientific Nexsa G2 X-Ray Photoelectron Spectrometer without any exposure to moisture and air. The XPS spectra were calibrated based on the C 1s peak at 284.5 eV, which corresponds to C-C bonding. The Brunauer–Emmett–Teller surface area was measured using a Micromeritics 3Flex analyser (77 K and 1 atm). All tested electrodes were washed three times with DMC solvent and further dried in the glovebox chamber for 20 min.

1.4. Electrochemical measurements

1.4.1 Electrode preparation

For the anode, a homogeneous slurry was prepared by mixing Fe@C (80 wt%), Super P (10 wt%), and polyacrylonitrile (PAN, 10 wt%) in NMP solvent. This slurry was uniformly spread onto copper foil and subsequently dried in a 120°C oven. The prepared Fe@C electrode and bare Cu foil were cut into 12.7 mm diameter discs and dried in a vacuum at 70°C overnight.

For the cathode, a slurry comprising $\text{LiNi}_{0.5}\text{Co}_{0.2}\text{Mn}_{0.3}$ (NCM523), Super P, and PVDF in a 90:5:5 weight ratio was dispersed in NMP solvent. This mixture was then coated onto an aluminum foil and dried under vacuum at 70°C overnight. The mass loading of NCM523 in each electrode was approximately 10 mg cm⁻².

1.4.2 Battery fabrication and testing

The electrolyte used was 1.2 M LiFSI in a FEC/DEC solution mixed in a 1:2 volume ratio. The 2032-coin cells were assembled in an argon-filled glovebox (with O_2 and H_2O content below 0.1 ppm), using PP separators (Celgard 2400) with a 16.5 mm diameter.

Coulombic efficiency (CE) for Li plating/stripping was determined using Li-Cu and Li-Fe@C cells. Here, Li was plated at a fixed capacity of 1.0 mAh cm⁻² and stripped at a cut-off voltage of 1.0 V with a current density of 1.0 mA cm⁻². The performance of Cu-NCM523 and Fe@C-NCM523 cells was evaluated between 3.0 and 4.3 V at 0.1 C and 0.5 C rates, respectively (the first two cycles for the Fe@C-NCM523 cell were conducted at 0.1 C). The Li@Cu-NCM523 and Li@Fe@C-NCM523 cell, assembled using a lithiated Cu and lithiated Fe@C electrode with a fixed capacity of 1 mAh cm⁻², underwent initial cycling at 0.1C between 3.0 and 4.3 V, followed by subsequent cycles at 0.5C. These cells were cycled galvanostatically on a WonTech battery test system at 25°C. Electrochemical impedance spectroscopy (EIS) measurements were conducted using a Bio-logic VSP over a frequency range of 10 mHz to 1 MHz, with an AC signal amplitude of 5 mV.

1.5 Computational details

All quantum chemistry calculations were conducted using the Gaussian 09 package¹ to conduct analyses of the lowest unoccupied molecular orbital (LUMO), highest occupied molecular orbital (HOMO) and natural bond orbitals (NBO). The geometries of molecules and Li-solvent-anion complexes were first optimized using the B3LYP-D3(BJ) functional in combination with 6-311++G(d,p) basis set². All the optimized structures were confirmed as potential minima, with no frequency modes with imaginary eigenvalues, through frequency analyses following geometry optimizations. The energies were obtained through M06-2X(D3) functional with DEF2TZVP basis set³. ⁴. In order to make the computational results closer to the actual electrolyte, the

solvent tetrahydrofuran was adopted. The solvation effect was considered using the universal solvation model of SMD⁵.

DFT calculations for Fe-BTC and Fe-BTC complexes were performed using the Vienna Ab initio Simulation Package (VASP)^{6,7}. The exchange-correlation interactions were described using the Perdew-Burke-Ernzerhof (PBE) functional within the generalized gradient approximation (GGA)⁸. Core-electron interactions were modeled using the projector augmented wave (PAW) method^{9, 10}, and a plane-wave basis set was employed with a kinetic energy cutoff of 400 eV. The Brillouin zone was sampled using a Gamma-centered k-point grid with a 3×3×3 mesh, ensuring appropriate convergence.

Figure S1. XRD patterns of pristine Fe-BTC (a) and carbonized Fe@C (b).

Figure S2. SEM images and EDX mappings of distribution C, O, Fe elements for Fe-BTC (a) and Fe@C (b).

Figure S3. FTIR spectra of Fe-BTC and Fe@C.

Figure S4. XPS N1s and S 2p spectra of Li metal deposited on bare Cu foil and Fe@C electrode.

Figure S5. The atomic ratios of Li, C, N, O, F and S in the XPS analysis of deposited Li.

Figure S6. Nyquist plots of half cells after (a) 1 cycle and (b) 50 cycles (bare Cu foil) and 100 cycles (Fe@C electrode).

Figure S7. Electrostatic potential (ESP) mapped molecular van der Waals (vdW) surface of the (a) Fe-BTC, (b) Li-FSI, (c) DEC and (d) FEC.

Figure S8. Energy comparisons of Fe-BTC with FSI-, FEC and DEC.

Figure S9. The optimized structure of (a) DEC, (b) FEC, (c) FSI⁻, (d) Li⁺-DEC, (e) Li⁺-FEC, (f) Li⁺-FSI-, (g) Li⁺-2DEC, (h) Li⁺-2FEC, (i) Li⁺-2FSI-, (j) Li⁺-4DEC, (k) Li⁺-4FEC, (l) Li⁺-FEC/DEC, (m) Li⁺-DEC-FSI-, (n) Li⁺-FEC-FSI-, (o) Li⁺-FEC/DEC-FSI-, (p) Li⁺-FEC/2DEC-FSI⁻, (q) Li⁺-2FEC/DEC-FSI⁻ and (r) Li⁺-FEC/DEC-2FSI⁻. White, pink, grey, blue, red, cyan and yellow balls represent H, Li, C, N, O, F and S atoms, respectively.

Figure S10. Analysis of calculated sizes for different solvation complexes.

Figure S11. The discharge and CE of Li@Cu-NCM523 full cell.

Figure S12. Rate performance of Li-NCM523 full cells with different electrodes.

Sample	C (wt%)	0 (wt%)	Fe (wt%)
Fe-BTC	50.47	34.12	15.41
Fe@C	47.54	25.85	26.61

Table S1. Surface composition of Fe-BTC and Fe@C obtained from EDX

	BET Specific	BJH Mesopore	t-Plot Micropore
Sample	Surface Area	Volume	Volume
	(m^{2}/g)	(cm^{3}/g)	(cm^{3}/g)
Fe-BTC	1443.83	0.277	0.588
Fe@C	596.6	0.015	0.232

Table S2. Variations of Brunauer–Emmett–Teller (BET) surface area, Barrett–Joyner–Halenda (BJH) total mesopore volume and t-plot total micropore volume

References

- 1. M. Frisch, G. Trucks, H. Schlegel, G. Scuseria, M. Robb, J. Cheeseman, G. Scalmani, V. Barone, B. Mennucci and G. Petersson, 2013.
- 2. A. D. J. T. J. o. c. p. Becke, 1992, **96**, 2155-2160.
- R. Banerjee, A. Phan, B. Wang, C. Knobler, H. Furukawa, M. O'Keeffe and O. M. Yaghi, 2008, **319**, 939-943.
- 4. F. Weigend and R. J. P. C. C. P. Ahlrichs, 2005, 7, 3297-3305.
- 5. A. V. Marenich, C. J. Cramer and D. G. J. T. J. o. P. C. B. Truhlar, 2009, **113**, 6378-6396.
- 6. G. Kresse and J. J. P. r. B. Hafner, 1993, 47, 558.
- 7. G. Kresse and J. J. P. r. B. Furthmüller, 1996, **54**, 11169.
- 8. J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. A. Constantin, X. Zhou and K. J. P. r. l. Burke, 2008, **100**, 136406.
- 9. J. P. Perdew and Y. J. P. r. B. Wang, 1992, 45, 13244.
- 10. G. Kresse and D. J. P. r. b. Joubert, 1999, **59**, 1758.