Solar Hydrogen Production via Z-Scheme Water Splitting System Based Solely on Perovskite-type Tantalum Oxynitrides

Wenpeng Li,^a Akio Hirako,^b Shuji Sekimori,^b Rhauane Almeida Galvão,^a Mamiko Nakabayashi,^c Faze Wang,^d Takashi Hisatomi,^{*e} Kazunari Domen^{*e,f,g}
^a Graduate School of Medicine, Science and Technology, Shinshu University, Nagano, Japan
^b Graduate School of Science and Technology, Shinshu University
^c Institute of Engineering Innovation, School of Engineering, The University of Tokyo, Tokyo, Japan
^d Research Initiative for Supra-Materials, Shinshu University, Nagano, Japan
^e Institute for Aqua Regeneration, Shinshu University, Nagano, Japan
^f Office of University Professors, The University of Tokyo, Japan
^g Department of Chemistry, Kyung Hee University, Republic of Korea

Kazunari Domen: domen@chemsys.t.u-tokyo.ac.jp Takashi Hisatomi: hisatomi@shinshu-u.ac.jp

Figure S1. (a) XRD pattern and (b) SEM image for SrTaO₂N(SSR).

Figure S2. (a) XRD pattern and (b) UV-vis DRS spectrum for BaTaO₂N:Zr.

Figure S3. SEM image of Cr₂O₃/Pt/BaTaO₂N:Zr.

Figure S4. Photocatalytic activities for ZOWS systems based on different SrTaO₂N samples, as reflected by gas evolution rates. Reaction conditions: 50 mg HEP (Cr₂O₃/Pt/BaTaO₂N:Zr, 0.9 wt% Cr and 0.3 wt% Pt) and 100 mg OEP (Pt(PD)/CoO_x/SrTaO₂N, 0.2 wt% Co and 0.2 wt% Pt); 150 mL of a 25 mM sodium phosphate buffer solution (pH 8) containing 1 mM [Co(bpy)₃]^{3+/2+} ions; 300 W Xe lamp ($\lambda \ge 420$ nm). The gas evolution rates represent the average values over a span of 10 h.

Figure S5. Effect of amount of (a) Pt(PD) and (b) CoO_x loaded onto SrTaO_2N on photocatalytic ZOWS activity for $\text{BaTaO}_2\text{N}:\text{Zr}-[\text{Co}(\text{bpy})_3]^{3+/2+}-\text{SrTaO}_2\text{N}$ system. Reaction conditions: 50 mg HEP ($\text{Cr}_2\text{O}_3/\text{Pt/BaTaO}_2\text{N}:\text{Zr}$, 0.9 wt% Cr and 0.3 wt% Pt) and 100 mg OEP (Pt(PD)/CoO_x/SrTaO_2\text{N}, 0.2 wt% Co and 0.2 wt% Pt); 150 mL of a 25 mM sodium phosphate buffer solution (pH 8) containing 1 mM [Co(bpy)_3]^{3+/2+} ions; 300 W Xe lamp ($\lambda \ge 420$ nm).

Figure S6. AQY as function of incident-light wavelength during ZOWS using BaTaO₂N:Zr- $[Co(bpy)_3]^{3+/2+}$ -SrTaO₂N system. Reaction conditions: 50 mg HEP (Cr₂O₃/Pt/BaTaO₂N:Zr, 0.9 wt% Cr and 0.3 wt% Pt) and 100 mg OEP (Pt(PD)/CoO_x/SrTaO₂N, 0.2 wt% Co and 0.2 wt% Pt); 150 mL of a 25 mM sodium phosphate buffer solution (pH 8) containing 1 mM $[Co(bpy)_3]^{3+/2+}$ ions; 300 W Xe lamp with various bandpass filters.

Figure S7. XPS spectrum of Pt(PD)/CoO_x/SrTaO₂N.

Figure S8. (a) Co 2p XPS spectra of Pt(PD)/CoO_x/SrTaO₂N before and after Pt(PD) loading and (b) Pt 4*f* XPS spectrum of same material.

Figure S9. (a) Photocatalytic O_2 evolution activity for $SrTaO_2N$ with various cocatalysts in 150 mL of aqueous 50 mM sodium phosphate buffer solution (pH 8) containing 5 mM K₃[Fe(CN)₆]. (b) Time course of gas evolution during the ZOWS reaction under visible light. Reaction conditions: 50 mg HEP ($Cr_2O_3(0.9 \text{ wt\%})/Pt(0.3 \text{ wt\%})$

wt%)/BaTaO₂N:Zr) and 100 mg OEP (Pt(PD)/CoO_x/SrTaO₂N, 0.2 wt% Co and 0.2 wt% Pt); 150 mL of 25 mM sodium phosphate buffer solution (pH 8) containing 1 mM K₄Fe(CN)₆ ions; 300 W Xe lamp ($\lambda \ge 420$ nm).

Figure S10 Mott-Schottky (MS) plots of (a) $SrTaO_2N$ and (b) $BaTaO_2N$:Zr at a fixed frequency of 1000 Hz, with the flat band potentials determined by extrapolating the MS curves to the energy axis. (c) Bandgap of $SrTaO_2N$ and $BaTaO_2N$:Zr calculated from the DRS data. (d) Energy diagram of the Z-scheme system ($BaTaO_2N$:Zr- $[Co(bpy)_3]^{3+/2+}$ -SrTaO₂N), including water redox potentials at pH 7. CB and VB indicate conduction band and valence band, respectively.

Figure S11. O_2 reduction current density for $CoO_x/SrTaO_2N/Ti$ and $Pt(PD)/CoO_x/SrTaO_2N/Ti$ photoanodes under dark conditions as functions of applied potential. Reaction conditions: 0.1 M sodium phosphate buffer solution (pH 8) saturated with O_2 .