Supporting information

Composition	Syntheses	Sintering	Ionic conductivity ×10 ⁻⁴	Activation energy	Dof
Composition	Process	Parameter	(S/cm)	(eV)	Nel.
LizLazZr2O12	Solid phase	1473 K for 12 h	0.17	0.47	[1]
	sintering	1475 K 101 12 II	0.17	0.17	
Lic LasZri Tas Ois	Solid phase	1413 K for 12 h	10	0.35	[2]
L16.4La3L11.41a0.6012	sintering	1415 K 101 12 II	10	0.55	
LicaLazZri Nha Qiz	Solid phase	1423 K for 1 h	3 49	0.32	[3]
D16.4D03211.61(00.4012	sintering	1125 10111	5.17	0.52	
Lie 76LazZr1 875Teo 125O12	Solid phase	1373 K for 15 h	3.3	0.25	[4]
0.70	sintering				
$Li_{6,3}La_{3}Zr_{1,65}W_{0,35}O_{12}$	Solid phase	1473 K for 12 h	6.4	0.43	[1]
0.5 5 1.05 0.55 12	sintering		-		
$Li_7La_3Zr_1Nb_{0.5}Y_{0.5}O_{12}$	Solid phase	1503 K for 15 h	8.29	0.31	[5]
, , , , , , , , , , , , , , , , , , , ,	sintering				
Li _{6.925} La _{2.95} Y _{0.05} Zr _{1.925} Sb ₀	Solid phase	1463 K for 6 h	3.2	0.30	[6]
.075O ₁₂	sintering				
$Li_7La_3Zr_{0.5}Nb_{0.5}Ta_{0.5}Hf_{0.5}$	Solid phase	1373 K for 20 h	4.67	0.25	[7]
O ₁₂	sintering				
$Li_{6.4}La_{3}Zr_{0.4}Ta_{0.4}Nb_{0.4}Y_{0.}$	Solid-state	1323 K for 36 h	1.16	0.23	[8]
₆ W _{0.2} O ₁₂					

 Table S1. Benchmark of LLZO with different dopant

Construction of computing crystal structure

The pure LLZO cubic bulk structure was constructed with a space group of Ia3d and a primitive unit cell formula Li₂₈La₁₂Zr₈O₄₈. Transition metal (TM) ions Ta⁵⁺, Nb⁵⁺ and Y³⁺ were equally 2 cation occupied at the Zr sites based on EXAFS data that show these cations share the same environment, which indicating the original 8 Zr⁴⁺ cations were partially substituted by these cations. A primitive cell with 94 atoms and a stochiometric formula of Li₂₆La₁₂Zr₂Ta₂Nb₂Y₂O₄₈ was constructed. Li ions were distributed to minimize Li+/Li+ repulsion forces, following the rule proposed by O'Callaghan *et al.* ^[9] , generating the most stable garnet structure. We select 2 different lithium ion by-rule distribution scenario, and random distribution of TM ions at the Zr sites was examined, totally 12 different distributed TM ions structures were conducted (**Figure S1**), and the most stable structure was selected for further calculations. The maximum energy variation in Li₂₆La₁₂Zr₂Ta₂Nb₂Y₂O₄₈ lattice among these distributions was 0.957 eV as shown in **Figure S2**. The lattice constant after optimization differed by less than 1% from experimental values, demonstrating the model is reliable (**Table S2**).

Hydration reactions were observed in the LLZO system in the presence of water molecules. Hydrogen from water tends to react with lithium ions in the material, forming LiOH in previous literature. ^[10] According to calculations, both pure LLZO and doped LLZTNYO, hydrogen preferably occupied the 96h site over the 24d site, where 96h and 24d sites indicated the lithium-ion Wyckoff position of the lattice (**Figure S3**). Various Li ion occupation scenarios were tested to determine the most stable configuration for further calculations.

The Kroger-Vink notation equation:

Increase lithium vacancies concentration

$$\mathbf{Ta(Nb)} \stackrel{LLZO}{\rightarrow} \mathbf{Ta(Nb)}_{Zr} + \mathbf{V}_{Li}'$$

Increase lithium-ion concentration

$$\mathbf{Y} \xrightarrow{LLZO} \mathbf{Y}_{Zr} + \mathbf{Li}_{Li}$$

Figure S1. Different LLZTNYO model with different ion distribution

Figure S2. Different TM distribution sample's total energy and their lattice constant

Table S2. Lattice constant of our model compared to previous literature and experiment result.

	Li ₇ La ₃ Z	Zr_2O_{12}	$Li_{6.5}La_{3}Zr_{0.5}Ta_{0.5}Nb_{0.5}Y_{0.5}O_{1}$		
				2	
	Exp	DFT	Exp	DFT	
Lattice constant (Å)	13.004	12.988	12.934	13.013	
△L (%)	0	0.123	0	-0.611	
Ref	Ref ^[11]	DFT work	Exp work	DFT work	

Figure S3. Structure of 24d and 96h Wyckoff positions

Figure S4. XRD patterns of Cubic LLZO, Li_{6.5}La₃Zr_{1.5}Ta_{0.5}O₁₂ (LLZTO), Li_{6.5}La₃Zr_{1.5}Nb_{0.5}O₁₂ (LLZNO), Li_{6.5}La₃Zr₁Ta_{0.5}Nb_{0.5}O₁₂ (LLZTNO), and Li_{6.5}La₃Zr_{0.5}Ta_{0.5}Nb_{0.5}O₁₂ (LLZTNYWO)

Figure S5. Refinement data of Cubic LLZO, (a) $Li_{6.5}La_3Zr_{1.5}Ta_{0.5}O_{12}$ (LLZTO), (b) $Li_{6.5}La_3Zr_{1.5}Nb_{0.5}O_{12}$ (LLZNO), (c) $Li_6La_3ZrTa_{0.5}Nb_{0.5}O_{12}$ (LLZTNO), and (d) $Li_{6.5}La_3Zr_{0.5}Ta_{0.5}Nb_{0.5}Y_{0.5}O_{12}$ (LLZTNYO)

Composition	Lattice parameter (Å)	Rwp	GOF
LLZTO	12.925	13.78	1.33
LLZNO	12.922	13.34	1.24
LLZTNO	12.905	11.29	1.18
LLZTNYO	12.934	16.39	1.7

Table S3. XRD Rietveld refinement parameters of LLZTO, LLZNO, LLZTNO, and LLZTNYO

Table S4. Structural solution of LLZTNYO from Rietveld refinement on neutron diffraction data.

Space group: "I a -3 d", a = 13.02796 Å, $\alpha = 90^{\circ}$, V = 2211.208 Å ³ , Rwp = 5.298%							
Atom	multiplicity	x	У	Z	fraction	Uiso (Å ²)	
La	24	0.125	0	0.25	1	0.0165	
Nb	16	0	0	0	0.25	0.0161	
Та	16	0	0	0	0.25	0.0161	
Y	16	0	0	0	0.25	0.0161	
Zr	16	0	0	0	0.25	0.0161	
Li	24	0.375	0	0.25	0.53	0.027	
Li	96	0.098858	0.188941	0.42926	0.41	0.027	
Ο	96	0.10228	0.19745	0.27925	1	0.0226	

Space g	roup = P1,	a = b = c 12	2.957 Å, $\alpha = \beta$	$\beta = \gamma = 90^{\circ},$			
	Rwp = 25.82%						
Atom		Position	S	Occupancy			
La	0.125	0	0.25	1			
La	0.25	0.875	0.5	1			
La	0.375	0	0.75	1			
La	0.25	0.125	0	1			
La	0.5	0.25	0.875	1			
La	0.75	0.375	0	1			
La	0	0.25	0.125	1			
La	0.875	0.5	0.25	1			
La	0	0.75	0.375	1			
La	0.875	0	0.75	1			
La	0.75	0.125	0.5	1			
La	0.625	0	0.25	1			
La	0.75	0.875	0	1			
La	0.5	0.75	0.125	1			
La	0.25	0.625	0	1			
La	0	0.75	0.875	1			
La	0.125	0.5	0.75	1			
La	0	0.25	0.625	1			
La	0.625	0.5	0.75	1			
La	0.75	0.625	0.5	1			
La	0.5	0.75	0.625	1			
La	0.375	0.5	0.25	1			
La	0.25	0.375	0.5	1			
La	0.5	0.25	0.375	1			
Li	0.375	0	0.25	0.53			
Li	0.25	0.125	0.5	0.53			
Li	0.125	0	0.75	0.53			
Li	0.25	0.875	0	0.53			
Li	0.25	0.375	0	0.53			
Li	0.5	0.25	0.125	0.53			
Li	0.75	0.125	0	0.53			
Li	0	0.25	0.875	0.53			
Li	0.875	0	0.25	0.53			
Li	0	0.25	0.375	0.53			
Li	0.125	0.5	0.25	0.53			
Li	0	0.75	0.125	0.53			
Li	0.625	0	0.75	0.53			
Li	0.75	0.875	0.5	0.53			
Li	0.75	0.625	0	0.53			
Li	0.5	0.75	0.875	0.53			
Li	0	0.75	0.625	0.53			
Li	0.875	0.5	0.75	0.53			

 Table S5. Structural solution of LLZTNYO from neutron PDF fitting.

Li	0.625	0.5	0.25	0.53
Li	0.75	0.375	0.5	0.53
Li	0.25	0.625	0.5	0.53
Li	0.5	0.75	0.375	0.53
Li	0.375	0.5	0.75	0.53
Li	0.5	0.25	0.625	0.53
Li	0.125	0.17849	0.42849	0.414
Li	0.07152	0.875	0.67849	0.414
Li	0.375	0.82151	0.92849	0.414
Li	0.42849	0.125	0.17849	0.414
Li	0.125	0.82151	0.07152	0.414
Li	0.07152	0.125	0.82151	0.414
Li	0.375	0.17849	0.57151	0.414
Li	0.42849	0.875	0.32152	0.414
Li	0.67849	0.07152	0.875	0.414
Li	0.92849	0.375	0.82151	0.414
Li	0.17849	0.42849	0.125	0.414
Li	0.82151	0.07152	0.125	0.414
Li	0.57151	0.375	0.17849	0.414
Li	0.32152	0.42849	0.875	0.414
Li	0.875	0.67849	0.07152	0.414
Li	0.82151	0.92849	0.375	0.414
Li	0.17849	0.57151	0.375	0.414
Li	0.875	0.32152	0.42849	0.414
Li	0.875	0.82151	0.57151	0.414
Li	0.92849	0.125	0.32152	0.414
Li	0.625	0.17849	0.07152	0.414
Li	0.57151	0.875	0.82151	0.414
Li	0.875	0.17849	0.92849	0.414
Li	0.92849	0.875	0.17849	0.414
Li	0.625	0.82151	0.42849	0.414
Li	0.57151	0.125	0.67849	0.414
Li	0.32152	0.92849	0.125	0.414
Li	0.07152	0.625	0.17849	0.414
Li	0.82151	0.57151	0.875	0.414
Li	0.17849	0.92849	0.875	0.414
Li	0.42849	0.625	0.82151	0.414
Li	0.67849	0.57151	0.125	0.414
Li	0.125	0.32152	0.92849	0.414
Li	0.17849	0.07152	0.625	0.414
Li	0.82151	0.42849	0.625	0.414
Li	0.125	0.67849	0.57151	0.414
Li	0.625	0.67849	0.92849	0.414
Li	0.92849	0.625	0.67849	0.414
Li	0.625	0.32152	0.57151	0.414
Li	0.57151	0.625	0.32152	0.414
Li	0.67849	0.92849	0.625	0.414

Li	0.32152	0.57151	0.625	0.414
Li	0.375	0.32152	0.07152	0.414
Li	0.07152	0.375	0.32152	0.414
Li	0.375	0.67849	0.42849	0.414
Li	0.42849	0.375	0.67849	0.414
Li	0.32152	0.07152	0.375	0.414
Li	0.67849	0.42849	0.375	0.414
Y	0	0	0	1
Nb	0.25	0.75	0.25	1
Y	0.5	0	0.5	1
Nb	0.25	0.25	0.75	1
Zr	0	0	0.5	1
Nb	0.25	0.25	0.25	1
Zr	0.5	0	0	1
Nb	0.25	0.75	0.75	1
Y	0.5	0.5	0	1
Nb	0.75	0.25	0.25	1
Zr	0	0.5	0	1
Nb	0.75	0.25	0.75	1
Y	0	0.5	0.5	1
Nb	0.75	0.75	0.25	1
Nb	0.75	0.75	0.75	1
Zr	0.5	0.5	0.5	1
0	0.10085	0.19759	0.28076	1
0	0.05241	0.85085	0.53076	1
0	0.39915	0.80241	0.78076	1
0	0.44759	0.14915	0.03076	1
0	0.10085	0.80241	0.21924	1
0	0.05241	0.14915	0.96924	1
0	0.39915	0.19759	0.71924	1
0	0.44759	0.85085	0.46924	1
0	0.28076	0.10085	0.19759	1
0	0.53076	0.05241	0.85085	1
0	0.78076	0.39915	0.80241	1
0	0.03076	0.44759	0.14915	1
0	0.21924	0.10085	0.80241	1
0	0.96924	0.05241	0.14915	1
0	0.71924	0.39915	0.19759	1
0	0.46924	0.44759	0.85085	1
0	0.14915	0.03076	0.44759	1
0	0.19759	0.28076	0.10085	1
0	0.85085	0.53076	0.05241	1
0	0.80241	0.78076	0.39915	1
0	0.14915	0.96924	0.05241	1
0	0.19759	0.71924	0.39915	1
0	0.85085	0.46924	0.44759	1
0	0.80241	0.21924	0.10085	1

0	0 80015	0.80241	0 71024	1
0	0.89913	0.80241	0.71924	1
0	0.60085	0.14715	0.40924	1
0	0.55241	0.85085	0.96924	1
0	0.89915	0.05005	0.78076	1
0	0.94759	0.85085	0.03076	1
0	0.60085	0.80241	0.28076	1
0	0.55241	0.14915	0.53076	1
0	0.71924	0.89915	0.80241	1
0	0.46924	0.94759	0.14915	1
0	0.21924	0.60085	0.19759	1
0	0.96924	0.55241	0.85085	1
0	0.78076	0.89915	0.19759	1
0	0.03076	0.94759	0.85085	1
0	0.28076	0.60085	0.80241	1
0	0.53076	0.55241	0.14915	1
0	0.85085	0.96924	0.55241	1
0	0.80241	0.71924	0.89915	1
0	0.14915	0.46924	0.94759	1
0	0.19759	0.21924	0.60085	1
0	0.85085	0.03076	0.94759	1
0	0.80241	0.28076	0.60085	1
0	0.14915	0.53076	0.55241	1
0	0.19759	0.78076	0.89915	1
0	0.60085	0.69759	0.78076	1
0	0.55241	0.35085	0.03076	1
0	0.89915	0.30241	0.28076	1
0	0.94759	0.64915	0.53076	1
0	0.60085	0.30241	0.71924	1
0	0.55241	0.64915	0.46924	1
0	0.89915	0.69759	0.21924	1
0	0.94759	0.35085	0.96924	1
0	0.78076	0.60085	0.69759	1
0	0.03076	0.55241	0.35085	1
0	0.28076	0.89915	0.30241	1
0	0.53076	0.94759	0.64915	1
0	0.71924	0.60085	0.30241	1
0	0.46924	0.55241	0.64915	1
0	0.21924	0.89915	0.69759	1
0	0.96924	0.94759	0.35085	1
0	0.64915	0.53076	0.94759	1
0	0.69759	0.78076	0.60085	1
0	0.35085	0.03076	0.55241	1
0	0.30241	0.28076	0.89915	
0	0.64915	0.46924	0.55241	
	0.69759	0.21924	0.89915	
0	0.35085	0.96924	0.94759	1

0	0.30241	0.71924	0.60085	1
0	0.39915	0.30241	0.21924	1
0	0.44759	0.64915	0.96924	1
0	0.10085	0.69759	0.71924	1
0	0.05241	0.35085	0.46924	1
0	0.39915	0.69759	0.28076	1
0	0.44759	0.35085	0.53076	1
0	0.10085	0.30241	0.78076	1
0	0.05241	0.64915	0.03076	1
0	0.21924	0.39915	0.30241	1
0	0.96924	0.44759	0.64915	1
0	0.71924	0.10085	0.69759	1
0	0.46924	0.05241	0.35085	1
0	0.28076	0.39915	0.69759	1
0	0.53076	0.44759	0.35085	1
0	0.78076	0.10085	0.30241	1
0	0.03076	0.05241	0.64915	1
0	0.35085	0.46924	0.05241	1
0	0.30241	0.21924	0.39915	1
0	0.64915	0.96924	0.44759	1
0	0.69759	0.71924	0.10085	1
0	0.35085	0.53076	0.44759	1
0	0.30241	0.78076	0.10085	1
0	0.64915	0.03076	0.05241	1
0	0.69759	0.28076	0.39915	1

Composition	Temperatura	Diameter	Thickness	Area	R _b	R _{gb}	Conductivity
Composition	Temperature	(cm)	(cm)	(cm^2)	(Ω)	(Ω)	(S/cm)
	25				365.5	153.2	1.73×10^{-4}
	40	1.024	0 000	0.940	346.6	89.23	2.06×10^{-4}
	60	1.034	0.088	0.840	220.5	34.69	3.52×10^{-4}
	80				169.4	11.13	4.98×10^{-4}
	25			0.854	257.7	173.9	2.09×10^{-4}
	40	1.043	0.077		185.6	102.6	3.13×10^{-4}
	60				128.7	41.54	5.30×10^{-4}
	80				70.81	5.58	1.18×10 ⁻³
	25	1.050	0.072	0.077	338.6	88.47	1.97×10^{-4}
	40				236.8	22.04	3.26×10^{-4}
	60	1.050	0.075	0.800	141.3	10.94	5.54×10^{-4}
	80				76.53	6.399	1.02×10^{-3}
	25				342.2	164.4	1.87×10^{-4}
	40	1.028	0.08	0.946	257.6	86.84	2.75×10^{-4}
	60	1.038	0.08	0.840	181	41.69	4.25×10^{-4}
	80				119.2	14.58	7.07×10^{-4}

Table S6. Fitting data of Nyquist plots under different measuring temperatures. R_g and R_{gb} represent the grain and grain boundary impedance, respectively.

Sampla	Dov	Diameter	Thickness	Area	R (Ω)	$R_{b}(Ω)$ $R_{gb}(Ω)$	Conductivity
Sample	Day	(cm)	(cm)	(cm ²)	b		(S/cm)
	1				365.5	153.2	1.73×10 ⁻⁴
	3				313.4	169.4	2.17×10 ⁻⁴
	5				340.5	141.5	2.17×10 ⁻⁴
LLZTO	10	1.034	0.088	0.84	316.5	253	1.84×10 ⁻⁴
	15				322.3	307.3	1.66×10 ⁻⁴
	20				290.5	502.8	1.32×10 ⁻⁴
	30				309.1	648.6	1.09×10^{-4}
	1				257.7	173.9	2.09×10 ⁻⁴
	3			0.854	257.1	311.6	1.59×10 ⁻⁴
	5		0.077		256.5	365.6	1.45×10 ⁻⁴
LLZNO	10	1.043			302.8	486	1.14×10 ⁻⁴
	15				280.5	646.7	9.72×10 ⁻⁵
	20				288.9	847	7.93×10 ⁻⁵
	30				288.9	847	7.93 × 10 ⁻⁵
	1				338.6	88.47	1.97×10 ⁻⁴
	3		0.073	0.866	340.2	123.8	1.82×10 ⁻⁴
	5				236.5	189.4	1.98×10 ⁻⁴
LLZTNO	10	1.05			439.1	82.92	1.63×10 ⁻⁴
	15				451.9	145.6	1.41×10 ⁻⁴
	20				456.8	191.8	1.30×10 ⁻⁴
	30				453	214.3	1.26×10 ⁻⁴
	1				342.2	164.4	1.87×10 ⁻⁴
	3				308	164.9	2×10 ⁻⁴
	5				315.2	160.2	1.99×10 ⁻⁴
LLZTNYO	10	1.038	0.08	0.846	248	131.9	2.49×10 ⁻⁴
	15				247.3	166.6	2.28×10 ⁻⁴
	20				208.5	198.5	2.32×10 ⁻⁴
	30				209.8	189.3	2.37×10 ⁻⁴

Table S7. Fitting data of Nyquist plots from Day 1 to Day 30.

LL	ZO	LLZTNYO		
Reaction energy (eV)	Li+/H+ (%)	Reaction energy (eV)	Li ⁺ /H ⁺ (%)	
-1.957	1.786	-1.934	1.852	
-9.840	8.929	-9.861	9.259	
-23.508	21.429	-23.439	23.077	
-39.434	35.714	-39.168	38.462	
-55.280	50	-51.258	50	

Table S8 Reaction energy of different percentage of Lithium-Hydrogen exchange (LHX)

Figure S6 Galvanostatic cycling test of (a) LLZTO, (b) LLZNO, and (c) LLZTNO (lithium plating or stripping was set to 1 h).

Reference:

- 1. Y. Li, Z. Wang, Y. Cao, F. Du, C. Chen, Z. Cui, X. Guo, Electrochimica Acta, 180 (2015) 37-42.
- Y. Li, J.-T. Han, C.-A. Wang, H. Xie, J.B. Goodenough, Journal of Materials Chemistry, 22 (2012) 15357-15361.
- 3. Y. Ji, C. Zhou, F. Lin, B. Li, F. Yang, H. Zhu, J. Duan, Z. Chen, Materials, 13 (2020).
- 4. C. Deviannapoorani, L. Dhivya, S. Ramakumar, R. Murugan, Journal of Power Sources, 240 (2013) 18-25.
- 5. J. Gai, E. Zhao, F. Ma, D. Sun, X. Ma, Y. Jin, Q. Wu, Y. Cui, Journal of the European Ceramic Society, 38 (2018) 1673-1678.
- Z. Cao, Y. Li, J. Su, J. Zhao, Y. Li, S. Yan, Q. Liu, T. He, H. Zhang, G.-R. Li, Ionics, 27 (2021) 1861-1870.
- 7. Z. Fu, J. Ferguson, Journal of the American Ceramic Society, 105 (2022) 6175-6183.
- C.-H. Kuo, A.-Y. Wang, H.-Y. Liu, S.-C. Huang, X.-R. Chen, C.-C. Chi, Y.-C. Chang, M.-Y. Lu, H.-Y. Chen, APL Materials, 10 (2022) 121104.
- 9. M.P. O'Callaghan, E.J. Cussen, Chem. Commun., (2007) 2048-2050.
- 10. C. Ma, E. Rangasamy, C. Liang, J. Sakamoto, K.L. More, M. Chi, Angewandte Chemie International Edition, 54 (2015) 129-133.
- R. Jalem, M.J.D. Rushton, W. Manalastas, Jr., M. Nakayama, T. Kasuga, J.A. Kilner, R.W. Grimes, Chemistry of Materials, 27 (2015) 2821-2831.