Supplementary Information (SI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2025

supporting information (SI)

Origins of Intrinsic p-type Conductivity, p-n Transition and Substoichiometry in SrO

Taifeng Liu^{1, 2*}, Xingfan Zhang², Jingcheng Guan², Xuebo Chen^{1, 3*}, You Lu⁴, Thomas

W. Keal⁴, John Buckeridge⁵, C. Richard A. Catlow^{2,6}, Alexey A. Sokol^{2*},

- National & Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials // College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, P. R. China.
- 2. Kathleen Lonsdale Materials Chemistry, Department of Chemistry, University College London, 20 Gordon Street, London, WC1H0AJ, United Kingdom.
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, Department of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
- 4. Scientific Computing Department, STFC Daresbury Laboratory, Warrington WA4 4AD, Cheshire, United Kingdom.
- School of Engineering, London South Bank University, 103 Borough Road, London SE1 OAA, United Kingdom.
- 6. School of Chemistry, Cardiff University, Park Place, Cardiff, CF10 1AT, United Kingdom.

Corresponding authors: T. Liu: tfliu@vip.henu.edu.cn; A. Sokol: a.sokol@ucl.ac.uk;

T. Liu and X. Zhang contributed equally to this work as co-first authors.

1. Energies curves as a function of the Sr-Sr bond length

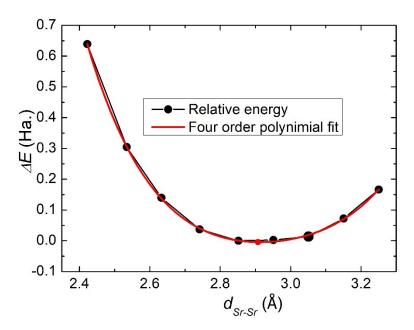


Figure S1. The energy curve as a function of the Sr-Sr bond length, and the red line is fitted with a fourth-order polynomial.

2. Formation energies of all defects at VBM

Table S3. The data of formation energies of V_o , V_{Sr} , O_i , and Sr_i under oxygen rich conditions at the VBM. For oxygen poor conditions, the difference is the SrO formation enthalpy which we take -6.182 eV 1 . Using these data, one can repeat the Figure 1 and 3 in the main text.

Defects	Charge	Oxygen rich		Oxygen poor	
		PBE0	BB1K	PBE0	BB1K
Vo	+2	-0.73153419	-0.58478943	-6.182	
	+1	2.129556934	2.262364999		
	0 1 1	7.983211073	8.209178628		
	0 ↑ ↓	6.525667362	6.445244413		
	-1 1 1	16.79394583	17.25901131		
	-1 ↑ ↓	15.58615147	15.63017921		
V _{Sr}	-2	5.201885784	5.674392243	+6.182	
	-1	3.689979208	4.03301462		
	0	2.42133562	2.661055248		
	+1	1.311229407	1.400374611		
	+2	0.429153163	0.369767893		
Oi	-2	8.408982115	8.607281794	+6.182	
	-1	4.973268892	5.231508931		
	0 ↑ ↑	2.871824832	3.074755074		
	0 ↑ ↓	0.62700147	0.665963527		
	+1	1.288870464	1.470439026		
Sr _i	+2	3.752012652	3.866544523	-6.182	
	+1	9.007137047	9.15382176		
	0	14.84527905	14.95443658		
	-1	20.76637337	20.91478002		

References:

1. I. J. Brink and C. E. Holley, *The Journal of Chemical Thermodynamics*, 1978, **10**, 259-266.