Supporting Information

Quick Drying Process: Promising Strategy for Preparing an Egg-shell-type Cu/γ-Al₂O₃ Catalyst for Direct N₂O Decomposition

Eun-Han Lee,^{ab} In-Heon Kwak,^{ac} Hansung Kim,^b Shin-Kun Ryi,*a

^a Korea Institute of Energy Research (KIER), 152 Gajeong-ro, Yuseong-gu, Daejeon 34129, Republic of Korea

^b Department of Chemical and Biological Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea

^c Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, Republic of Korea

	Balance	N ₂ O	NF ₃	Steam	Temp. (°C)	GHSV (h ⁻¹)
Case 1	N_2		-	-	400-650	1,800
Case 2	Air	1%	-	-	400-650	1,800
Case 3	Air	_	-	7.5%	400-650	1,960
Case 4	N ₂	1-20%	-	-	450-600	1,800

Table S1. Conditions of deN_2O tests.

Samula	Cu Shell thickness (mm)									
Sample	1	2	3	4	5	Mean				
OD-Cu(1)	0.99	1.05	1.00	0.97	0.99	1.00				
VOD-Cu(1)	0.63	0.66	0.67	0.65	0.68	0.66				
QD-Cu(1)	0.34	0.30	0.34	0.30	0.30	0.32				
QD-Cu(5)	0.38	0.39	0.40	0.41	0.40	0.40				
QD-Cu(10)	0.46	0.48	0.48	0.47	0.49	0.48				
QD-Cu(15)	0.55	0.53	0.55	0.54	0.52	0.54				

 Table S2. Cu shell thickness of the prepared catalysts.

Catalyst	Temp.(°C)	$r (\mu mols^{-1}g_{cat}^{-1})$	Active site $(\mu molg_{cat}^{-1})$	TOF (s^{-1})
OD-Cu(1)		0.011	135	7.8×10^{-5}
VOD-Cu(1)	450	0.014	139	9.9 × 10 ⁻⁵
QD-Cu(1)		0.023	143	1.6×10^{-4}

Table S3. Turnover frequency (TOF) value over OD-, VOD-, and QD-Cu(1)/ γ -Al₂O₃ catalysts.

Section	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Balance	N_2	Air	Air	Air	N_2	N_2	N_2	N_2	Air	Air	Air	N_2	N_2	N_2
Steam (%)	-	-	7.5	-	-	1.8 → 7.5	7.5	7.5	7.5	7.5	-	-	-	-
Temp. (°C)	500	500	500	500	500	550	550 →580	580	580	600	570	500	R.T	500
Conv. (%)	~99	~83	~54	~83	~99	~73	~98	~98	~96	~98	~99	~99	0	~99
Time	24	24	48	72	96	161	166	171	183	190	207	231	291	313
(h)	2 4	-48	-72	-96	-161	-166	-171	-183	-190	-207	-231	-291	-313	-360

 $\label{eq:stable} \textbf{Table S4.} \ N_2O \ conversion \ over \ the \ QD-Cu(10)/\gamma-Al_2O_3 \ catalyst \ at \ 1\% \ N_2O \ concentration \ and \ different \ feed \ conditions \ with \ time \ on \ stream.$

Section	1	2	3	4	5	6	7	8	9	10
Balance	N_2	Air	Air	Air	Air	Air	Air	N_2	N_2	N_2
Steam (%)	-	-	-	-	7.5	7.5	7.5	7.5	7.5	-
Temp. (°C)	550	550	550 →600	600	600	600 →630	630 →650	650	650 →640	640 →550
Conv. (%)	~99	~95	~99	~99	~96	~98	~99	~99	~99	~99
Time (h)	356	357 -358	358-372		373 -375	375 -376	377 -397	397 -399	400 -422	422 -500

 $\label{eq:solution} \textbf{Table S5.}\ N_2O\ conversion\ over\ the\ QD-Cu(10)/\gamma-Al_2O_3\ catalyst\ at\ 20\%\ N_2O\ concentration\ and\ different\ feed\ conditions\ with\ time\ on\ stream.$

No.	Catalyst	Shape	Feed condition		T. (°C)	Initial conv. value (%)	Durability (%)	Ref.
a	Sm _{0.06} Ni	Powder	2000 ppmv N ₂ O + 5 vol.% H ₂ O in Ar balance		350	59	56 after 8 h	1
b	Ce ₂₀ CO	Powder	1000 ppm N ₂ O in He balance	80,000	350	90	54 after 24 h	2
с	Co/MgO-15%	Powder	1% N ₂ O in He balance		500	100	100 after 100 h	3
d	Pb _{0.04} Co	Powder	2000 ppmv N ₂ O in Ar with or without 10 vol.% CO ₂ + 5vol.% O ₂	20,000	350	100	100 after 15 h	4
e	CuO	Powder	2600 ppm N ₂ O in He balance, p=0.3 MPa	19,000	480	100	5 after 15 h	5
e	Cu _{0.67} Ce _{0.33} O _y	Powder	2600 ppm N ₂ O in He balance, p=0.3 MPa	19,000	480	100	91 after ~120 h	
f	Cu-ZSM-5	Powder	5000 ppm N_2O in He balance	-	475	80	80 after 50 h	6
g	γ -Al ₂ O ₃	Pellets	1 mol.% N ₂ O in N ₂ balance	1,818	700	100	100 after 350 h	7
h	Cu(10)/γ-	D 11 /	1 mol.% N ₂ O, 0-7.5% H ₂ O in N ₂ or Air balance	1,800 -1,960	500- 600	99	99 after 360 h	This
i	$- Al_2O_3$ Pellets		20 mol.% N ₂ O, 0-7.5% H ₂ O in N ₂ or Air balance	1,800 -1960	550- 650	99	99 after 500 h	study

Table S6. Long-term stability test of various catalysts in N₂O decomposition.

Fig. S1. (a) Schematic diagram and (b) optical image of the N_2O decomposition test system.

Fig. S2. (a) N_2 adsorption and desorption isotherms and (b) pore size distributions of the γ -Al₂O₃ and OD-, VOD-, and QD-Cu(1)/ γ -Al₂O₃ catalysts.

Fig. S3. Cross-sectional image of the prepared catalysts.

Jan hum	- Cu
1 the	un mar and the second where
Cu shell layer	γ -Al ₂ O ₃ support
	10 <i>µ</i> m

Fig. S4. EDS line scanning analysis of the QD-Cu(10)/ γ -Al₂O₃ catalyst.

Fig. S5. XPS spectra of Cu 2p of the QD-Cu(x)/ γ -Al₂O₃ catalysts (x: 5, 10, 15 wt.%).

Fig. S6. H₂-TPR curves for the γ -Al₂O₃ and of the QD-Cu(x)/ γ -Al₂O₃ catalysts (x: 5, 10, 15 wt.%).

Fig. S7. NO_x (NO and NO₂) concentration at the outlet of the catalytic reactor measured by a gas detector during the deN₂O test using the QD-Cu(10)/ γ -Al₂O₃ catalyst.

Fig. S8. N_2O conversion over the QD-Cu(10)/ γ -Al₂O₃ catalyst at 20% N_2O concentration under different feed conditions with time on stream.

Element	Weight%
ОК	32.88
AIK	16.46
Cu K	50.65
Totals	100.00

Fig. S9. SEM/EDS mapping analysis after 500hr stability test of the QD-Cu(10)/ γ -Al₂O₃ catalyst surface.

References

1. J. Qi, X. Qi, Y. Pan, J. Cui, Y. Xiong, W. Shan and H. Yu, Appl. Surf. Sci., 2023, 611, 155657.

2. Y. You, H. Chang, L. Ma, L. Guo, X. Qin, J. Li and J. Li, Chem. Eng. J., 2018, **347**, 184-192.

3. Q. Shen, L. Li, J. Li, H. Tian and Z. Hao, J. Hazard. Mater., 2009, 163, 1332-1337.

4. H. Yu, M. Tursun, X. Wang and X. Wu, Applied Catalysis B: Environmental, 2016, **185**, 110-118.

5. H. Zhou, Z. Huang, C. Sun, F. Qin, D. Xiong, W. Shen and H. Xu, Applied Catalysis B: Environmental, 2012, **125**, 492-498.

 W. Zou, P. Xie, W. Hua, Y. Wang, D. Kong, Y. Yue, Z. Ma, W. Yang and Z. Gao, J. Mol. Catal. A: Chem., 2014, **394**, 83-88.

7. E.-H. Lee, T.-W. Kim, S. Byun, D.-W. Seo, H.-J. Hwang, J. Baek, E.-S. Jeong, H. Kim and S.-K. Ryi, Clean Technology, 2023, **29**, 126-134.