Supplementary Information

Stable and efficient n = 2 Ruddlesden-Popper La/Pr nickelates as oxygen electrodes for SOCs applications

Romuald Frugier^a, Jacinthe Gamon^a, Sébastien Fourcade^a, Sonia Buffière^a, Jean-Marc Bassat^{a,*}

^a CNRS, Univ. Bordeaux, Bordeaux INP, ICMCB, UMR 5026, F-33600 PESSAC Cedex, France

* corresponding author : jean-marc.bassat@icmcb.cnrs.fr

Fig. S1 Powder XRD diagram for La_{1.125} Pr_{1.875} Ni_2O_{7\pm\delta} synthesis under O2 gas flow at 1150 °C for 120 h

Fig. S2 SEM pictures of the as-prepared powder of $La_{3-x}Pr_xNi_2O_{7\pm\delta}$ ($x \le 1.5$)

Fig. S3 Rietveld refinement patterns for $La_{3-x}Pr_xNi_2O_{7\pm\delta}$ with x = 0, 0.375, 0.75, 1.125, 1.5.

Fig. S4 Cell volume evolution in function of *x* in $La_{3-x}Pr_xNi_2O_{7\pm\delta}$ from Rietveld refinement

Fig. S5 TGA plot under Ar-5 % H₂, a) *x* = 0, b) *x* = 0.375, c) *x* = 1.125

Table S1 Structural parameters for the different n = 2 Ruddlesden-Popper nickelates determined by Rietveld refinements with the orthorhombic *Amam* space group. Standard variations were multiplied by the Berar factor (4.6, 4.0, 3.7, 3.8, 5.2, for x = 0, 0.375, 0.75, 1.125, 1.5 respectively).

Large standard variations were obtained for the isotropic displacement , *B*, due to the difficulty of correct modelling of the peak shapes. This was attributed to the presence of structural defects, such as stacking faults, to which RP phases are often subjected. The *B* value for atoms of the same type (equatorial oxygen O3 and O4 as well as the two *Ln* sites) were constraint to the same value.

La₃Ni₂O_{7±δ}, α = 5.39744(9) Å, b = 5.44944(2) Å, c = 20.5219(6) Å

Atom	х	Y	Z	<i>B</i> (Å)	Occupancy	Wyckoff site
La1	0.25	0.245(5)	0.5	0.16(6)	1	4 <i>c</i>
La2	0.25	0.256(3)	0.3189(2)	0.16(6)	1	8 <i>g</i>
Ni1	0.25	0.252(11)	0.0984(6)	0.56(22)	1	8g
01	0.25	0.295(28)	0	2(2)	1	4 <i>c</i>
02	0.25	0.283(26)	0.2027(27)	4(2)	1	8 <i>g</i>
O3	0	0.5	0.1071(36)	1.5(9)	1	8e
04	0.5	0	0.0822(38)	1.5(9)	1	8e

La_{2.625}Pr_{0.375}Ni₂O_{7±δ}, *a* = 5.3871(4) Å, *b* = 5.45187(4) Å, *c* = 20.4871(3) Å

Atom	x	Y	Z	B (Å)	Occupancy	Wyckoff site	
La1	0.25	0.249(4)	0.5	0.04(4)	0.875	4 <i>c</i>	
Pr1	0.25	0.249(4)	0.5	0.04(4)	0.125	4 <i>c</i>	
La2	0.25	0.255(3)	0.31924(16)	0.04(4)	0.875	8 <i>g</i>	
Pr2	0.25	0.255(3)	0.31924(16)	0.04(4)	0.125	8 <i>g</i>	
Ni1	0.25	0.254(8)	0.09841(16)	0.16(16)	1	8 <i>g</i>	
01	0.25	0.258(8)	0	6(2)	1	4 <i>c</i>	
02	0.25	0.22(2)	0.202(2)	1.7(12)	1	8 <i>g</i>	
03	0	0.5	0.1064(24)	0.15(16)	1	8 <i>e</i>	
04	0.5	0	0.0812(28)	0.15(16)	1	8 <i>e</i>	

$La_{2.25}Pr_{0.75}Ni_2O_{7\pm\delta}$, $a = 5.3841(1)$ Å, $b = 5.4550(1)$ Å, $c = 20.4478(5)$ Å							
Atom	х	Y	Z	B (Å)	Occupancy	Wyckoff site	
La1	0.25	0.248(4)	0.5	0.145(41)	0.75	4 <i>c</i>	
Pr1	0.25	0.248(4)	0.5	0.145(41)	0.25	4 <i>c</i>	
La2	0.25	0.251(6)	0.3203(2)	0.145(41)	0.75	8 <i>g</i>	
Pr2	0.25	0.251(6)	0.3203(2)	0.145(41)	0.25	8g	
Ni1	0.25	0.250(9)	0.1088(3)	0.235(155)	1	8g	
01	0.25	0.30(1)	0	4.3(24)	1	4 <i>c</i>	
02	0.25	0.23(2)	0.212(2)	3(1)	1	8g	
03	0	0.5	0.106(3)	1.0(7)	1	8e	
04	0.5	0	0.069(3)	1.0(7)	1	8e	

La _{1.875} Pr _{1.125} Ni ₂ O _{7±6} , a = 5.3774(1) Å, b = 5.4551(1) Å, c = 20.3886(6) Å							
Atom	х	Y	Z	<i>B</i> (Å)	Occupancy	Wyckoff site	
La1	0.25	0.2502(45)	0.5	0.804(15)	0.375	4 <i>c</i>	
Pr1	0.25	0.2502(45)	0.5	0.804(15)	0.625	4 <i>c</i>	
La2	0.25	0.255(3)	0.3197(3)	0.23(8)	0.375	8 <i>g</i>	
Pr2	0.25	0.255(3)	0.3197(3)	0.23(8)	0.625	8g	
Ni1	0.25	0.257(4)	0.1098(4)	0.41(21)	1	8 <i>g</i>	
01	0.25	0.324(17)	0	2(2)	1	4 <i>c</i>	
02	0.25	0.22(18)	0.215(3)	2.2 (12)	1	8 <i>g</i>	
03	0	0.5	0.108(3)	2.0 (12)	1	8e	
04	0.5	0	0.073(3)	2.0(12)	1	8e	

La _{1.5} Pr _{1.5} Ni ₂ O _{7±δ} , <i>a</i> = 5.3718(6) Å, <i>b</i> = 5.4594(5) Å, <i>c</i> = 20.362(3) Å							
Atom	х	Y	Z	<i>B</i> (Å)	Occupancy	Wyckoff site	
La1	0.25	0.25(1)	0	0.73(5)	0.5	4 <i>c</i>	
Pr1	0.25	0.25(1)	0.5	0.73(5)	0.5	4 <i>c</i>	
La2	0.25	0.255(5)	0.319(25)	0.73(5)	0.5	8 <i>g</i>	
Pr2	0.25	0.255(5)	0.319(25)	0.73(5)	0.5	8 <i>g</i>	
Ni1	0.25	0.25(2000)	0.0969(5)	1.23(35)	1	8 <i>g</i>	
01	0.25	0.30(3)	0	1.4(30)	1	4 <i>c</i>	
02	0.25	0.20(2)	0.204(3)	1.5(20)	1	8 <i>g</i>	
03	0	0.5	0.108(4)	0.5(10)	1	8 <i>e</i>	
04	0.5	0	0.085(5)	0.5(10)	1	8 <i>e</i>	

Fig. S6 Diffractograms of La_{2.625}Pr_{0.375}Ni₂O_{7± δ}, La_{2.25}Pr_{0.75}Ni₂O_{7± $\delta} and La_{1.875}Pr_{1.125}Ni₂O_{7±<math>\delta$} aged at 600, 700 and 800 °C for 3 months and as-prepared. * These (00/) reflections are subject to preferential orientation. The presence of Pr₆O₁₁ in La_{1.875}Pr_{1.125}Ni₂O_{7± δ} aged at 800 °C for 3 months comes from the decomposition of the small Pr₂NiO_{4+ δ} impurity obtained after synthesis due to a slight deviation from the exact stoichiometry when weighting the precursors</sub>

Fig. S7 Cell parameters obtained through profile matching refinement against the data of La₃₋ $_{x}Pr_{x}Ni_{2}O_{7\pm\delta}$ aged at 600, 700 and 800°C for 1 month and as-prepared

Fig S8 Diffractogram (20-60°) of the aged GDC/ La₃Ni₂O_{7± δ} mixture at 800 °C for 1 month. / corresponds to the La_{1-x}Pr_xNiO_{3- δ} perovskite phase, - to GDC and unlabelled peaks the La_{3-x}Pr_xNi₂O_{7± δ} phase

Fig. S9 Powder XRD diagrams (zooms) of the nickelate and GDC mixture as-prepared and after ageing at 600 °C and 800 °C for 1 month for (a, d) $La_3Ni_2O_{7\pm\delta}$, (b, e) $La_{2.25}Pr_{0.75}Ni_2O_{7\pm\delta}$ and, (c, f) $La_{1.5}Pr_{1.5}Ni_2O_{7\pm\delta}$. * These (00/) reflections are subject to preferential orientation

Fig. S10 Cell parameters of the GDC phase obtained through profile matching refinement against the XRD data of GDC aged in presence of $La_{3-x}Pr_xNi_2O_{7\pm\delta}$ at 600, 700 and 800 °C for 1 month and asprepared.

Fig. S11 SEM images of the symmetrical cells of (a) $La_{2.625}Pr_{0.375}Ni_2O_{7\pm\delta}$, (b) $La_{2.25}Pr_{0.75}Ni_2O_{7\pm\delta}$ and, (c) $La_{1.875}Pr_{1.125}Ni_2O_{7\pm\delta}$. All pictures were taken with a magnification of 5000.

Table S2 Parameters used to fit the Nyquist obtained at 600°C. Standard uncertainties are those given by the fitting which are largely underestimated.

	La ₃ Ni ₂ O _{7±δ}	La _{2.625} Pr _{0.375} Ni ₂ O _{7±δ}	La _{2.25} Pr _{0.75} Ni ₂ O _{7±δ}	La1.875Pr _{1.125} Ni ₂ O _{7±δ}	$La_{1.5}Pr_{1.5}Ni_2O_{7\pm\delta}$
R _s (Ω.cm²)	2.829 ± 0.001	4.538 ± 0.007	2.8503 ± 0.0005	4.7941 ± 0.0002	3.5412 ± 0.0004
R1 (Ω.cm²)	1.760 ± 0.002	0.242 ± 0.001	0.2389 ± 0.0007	0.2238 ± 0.0002	0.4430 ± 0.0005
Q 1 (S.s ⁿ)	0.001331 ± 0.000003	0.000232 ± 0.000001	0.0067 ± 0.0001	0.0188 ± 0.0001	0.00470 ± 0.00002
n1	0.5638 ± 0.0002	0.947 ± 0.002	0.627 ± 0.001	0.5525 ± 0.0004	0.8357 ± 0.0006
R₂ (Ω.cm²)	2.043± 0.002	1.380 ± 0.002	1.220 ± 0.001	0.4583 ± 0.0002	
Q ₁ (S.s ⁿ)	0.001488 ± 0.000004	0.00142 ± 0.00001	0.00229 ± 0.00001	0.001155 ± 0.000002	
n ₂	0.7803 ± 0.0004	0.7556 ± 0.0004	0.8098 ± 0.0003	0.9617 ± 0.0002	

Fig. S12 XRD diagram of the as-prepared $La_{2.25}Pr_{0.75}Ni_2O_{7\pm\delta}//GDC//YSZ$ symmetrical cell, co-sintered at 950 °C for 2 h.

Fig. S13 Bode plot of $La_3Ni_2O_{7\pm\delta}$ and $La_{1.5}Pr_{1.5}Ni_2O_{7\pm\delta}$ obtained at 600°C.