Supplementary Information (SI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2025

Electronic Supplementary Information (ESI)

Surface Structure Evolution of Bimetallic Nickel Tungsten Nitride (Ni₂W₃N) for High Performance Hydrogen Evolution

Ji Young Hwang^a, Yeonju Park^b, Young Mee Jung^{*b}, Hyung-Kyu Lim^{*a}, Duck Hyun Youn^{*a}

^a Department of Chemical Engineering, Department of Integrative Engineering for Hydrogen Safety, Kangwon National University, Chuncheon 24341, South Korea.

^bDepartment of Chemistry, Institution for Molecular Science and Fusion Technology, Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon, 24341, South Korea

*Corresponding authors

E-mail address: ymjung@kangwon.ac.kr (Y.M.J), hklim@kangwon.ac.kr (H.-K.L.), youndh@kangwon.ac.kr (D.H.Y.)

Fig. S1. Schematic illustration for synthetic method of Ni₂W₃N/NF.

Fig. S2. XRD patterns of the prepared samples a) at different annealing temperatures (fixed duration: 3h) and b) at different annealing durations (fixed temperature: 650 °C).

Fig. S3. (a) SEM images of NF and corresponding EDS mapping images of (b) Ni, (c) W, (d) N. Scale bars denote 200 um.

Fig. S4. Average particle size of Ni_2W_3N/NF .

Fig. S5. (a) N_2 adsorption-desorption isotherms for Ni_2W_3N/NF and NF, (b) pore size distribution of Ni_2W_3N/NF .

Fig. S6. XPS spectra of Ni_2W_3N/NF for (a) survey, (b) W 4f, (c) N 1s, and (d) Ni 2p.

Fig. S7. (a) XRD patterns of W_2N powder and W_2N/NF . (b) The LSV curves of Ni_2W_3N/NF and W_2N/NF .

Fig. S8. (a) Tafel plots of Ni₂W₃N/NF, Pt/C, and NF. (b) Nyquist plots of Ni₂W₃N/NF and NF.

Fig. S9. Cyclic voltammograms of (a) NF and (b) Ni_2W_3N/NF at different scan rates. (c) measured capacitive current as a function of scan rate of Ni_2W_3N/NF , and NF.

Fig. S10. Chronopotentiometric curve of Ni_2W_3N/NF at 100 mA cm⁻² for 72 h.

Fig. S11. XPS spectra of Ni_2W_3N/NF during the stability test (a) survey scan for 2h, (b) survey scan for 6h, (c) W 4f for 2h, and (d) W 4f for 6h.

Fig. S12. XPS Spectra of after CP for 30 h of Ni_2W_3N/NF for (a) W 4f, (b) Ni 2p.

Fig. S13. XRD patterns of before and after CP for 30 h of Ni_2W_3N/NF .

Fig. S14. (a) TEM image, (b), (c) FFT images, (d) HRTEM image (e) Ni, (f) W, (g) O, and (h) N.

Fig. S15. Tafel plots of before and after CP for 30 h of Ni_2W_3N/NF .

Fig. S16. Potential-dependent *in situ* Raman spectra of NF in 1 M KOH (a) applying voltage in the negative direction, and (b) applying voltage in the positive direction.

Fig. S17. The *ex-situ* Raman spectra of the no bias and after HER at -0.06 V of Ni_2W_3N/NF .

Fig. S18. Water dissociation structures on pure metal (Pt, Ni, W) and Ni₂W₃N surfaces.

Fig. S19. The most stable surface functional groups on $Ni_2W_3N[-W]$ as a function of electrochemical potential.

Fig. S20. Possible hydrogen binding sites for original $Ni_2W_3N(221)$, W-leached $Ni_2W_3N[-W]$, and *OH-attached $Ni_2W_3N[-W/*OH]$ surfaces.

Fig. S21. Differential charge density iso-surface map of $Ni_2W_3N[-W/*OH]$ surface and corresponding Bader partial charge analysis results. Adjacent Ni atoms (1 and 2) show significant electron depletion due to the electron-withdrawing effect of *OH.

	electrolyte	η ₅₀ [mV]	η ₁₀₀ [mV]	Tafel slope [mV dec ⁻¹]	Reference
Ni ₂ W ₃ N/NF (Fresh)	1 М КОН	75.5	112	71	This work
Ni ₂ W ₃ N/NF (After CP for 30h)	1 М КОН	46.5	78.7	57	This work
Co ₃ Mo ₃ N/ Ni ₃ Mo ₃ N	1 М КОН	36 (η ₁₀)	130	53	1
Ni₃FeN@C/NF	1 М КОН	~200	277	131	2
NiMoN	1 М КОН	227	293	174	3
Co-Mo-N/NF	1 М КОН	81 (η ₁₀)	198	121	4
Ni ₃ Mo ₃ N-NC/NF	1 М КОН	39 (η ₁₀)	149	71	5
NiMo _{0.75} N/PNCT	1 М КОН	52 (η ₁₀)	~200	82	6
Co ₂ Ni ₁ N	1 М КОН	~200	N/A	60.17	7
Ni ₂ Mo ₃ N/NF	1 М КОН	89	123.8	62	8
FeNi₃N/NG	1 М КОН	98 (η ₂₀)	186	83.1	9
NiMoN-550	1 М КОН	159 (η ₂₀)	265	79	10
CoMoN _x -400	1 М КОН	91 (η ₁₀)	208	70.3	11
NSAs/NF					
Co _{3.2} Fe _{0.8} N/NMC- 100	1 М КОН	315 (η ₁₀)	N/A	N/A	12
NiCo ₂ N/NF	1 М КОН	~180 (ŋ ₁₀)	N/A	79	13
NiTiN _x	1 М КОН	125 (η ₁₀)	~200	71	14
Ni ₂ Fe ₂ N/Ni ₃ Fe	1 М КОН	74 (η ₁₀)	N/A	53	15
V-Ni ₂ Mo ₃ N	1 М КОН	54 (η ₁₀)	117	42.8	16
MoVN	1 М КОН	108 (η ₁₀)	~180	60	17
Cu _x Ni _{4-x} N/NF	1 М КОН	12 (η ₁₀)	111	86	18
Ni ₃ Mo ₃ N/NF-2.0	1 М КОН	28 (η ₁₀)	N/A	60	19
Ni/Ni _{0.8} Mo _{4.2} N ₆	1 М КОН	20 (ŋ ₁₀)	~130	38	20
Fe ₂ Ni ₂ N	1 М КОН	110 (η ₁₀)	~310	101	21

Table S1. Comparison of the HER performance in alkaline media with reported bimetallicTMN-based catalysts.

References

- 1. J. Tang, S. Zhang, Y. Zeng, B. Yang, K. Zhang, Y. Li, Y. Yao and J. Hu, *Chem. Eng. J.*, 2024, **487**, 150439.
- 2. B. Wang, M. Lu, D. Chen, Q. Zhang, W. Wang, Y. Kang, Z. Fang, G. Pang and S. Feng, *J. Mater. Chem. A*, 2021, **9**, 13562-13569.
- 3. V. Jayaraman, G. Jang, G.-H. Noh, M. Murmu and D.-H. Kim, *J. Mater. Chem. A*, 2024., doi: https://doi.org/10.1039/D4TA01117A
- 4. J. Zhu, Q. Du, M. A. Khan, H. Zhao, J. Fang, D. Ye and J. Zhang, *Appl. Surf. Sci.*, 2023, **623**, 156989.
- 5. P. Tan, Y. Wang, L. Yang, X. Zhang and J. Pan, *Diam. Relat. Mater.*, 2023, **136**, 109974.
- 6. B. Jiang, J. Li, Y. Cui, S. Shi, N. Jiang and J. Guan, *J. Alloys Compd.*, 2023, **958**, 170371.
- 7. X. Feng, H. Wang, X. Bo and L. Guo, *ACS Appl. Mater. Interfaces*, 2019, **11**, 8018-8024.
- 8. S. H. Park, T. H. Jo, M. H. Lee, K. Kawashima, C. B. Mullins, H.-K. Lim and D. H. Youn, *J. Mater. Chem. A*, 2021, **9**, 4945-4951.
- 9. L. Liu, F. Yan, K. Li, C. Zhu, Y. Xie, X. Zhang and Y. Chen, *J. Mater. Chem. A*, 2019, **7**, 1083-1091.
- 10. Z. Yin, Y. Sun, C. Zhu, C. Li, X. Zhang and Y. Chen, *J. Mater. Chem. A*, 2017, **5**, 13648-13658.
- 11. Y. Lu, Z. Li, Y. Xu, L. Tang, S. Xu, D. Li, J. Zhu and D. Jiang, *Chem. Eng. J*, 2021, **411**, 128433.
- 12. K. Zhang, W. Mai, J. Li, G. Li, L. Tian and W. Hu, *ACS Appl. Nano Mater.*, 2019, **2**, 5931-5941.
- 13. Y. Wang, B. Zhang, W. Pan, H. Ma and J. Zhang, *ChemSusChem*, 2017, **10**, 4170-4177.
- 14. S. Tang, B. Ouyang, H. Tan, W. Zhou, Z. Ma and Y. Zhang, *Electrochim. Acta*, 2020, **362**, 137222.
- 15. Y. Hu, T. Xiong, M.-S. J. T. Balogun, Y. Huang, D. Adekoya, S. Zhang and Y. Tong, *Mater. Today Phys.*, 2020, **15**, 100267.
- 16. P. Zhou, X. Lv, Y. Gao, Z. Liang, Y. Liu, Z. Wang, P. Wang, Z. Zheng, Y. Dai and B. Huang, *Electrochim. Acta*, 2020, **337**, 135689.
- 17. B. Wei, G. Tang, H. Liang, Z. Qi, D. Zhang, W. Hu, H. Shen and Z. Wang, *Electrochem. Commun.*, 2018, **93**, 166-170.
- 18. Y. Ma, Z. He, Z. Wu, B. Zhang, Y. Zhang, S. Ding and C. Xiao, *J Mater. Chem. A*, 2017, **5**, 24850-24858.
- 19. Q. Zhang, H. Zhang, C. Lin, Z. Zhang, X. Zuo, Q. Yang, H. Tang and G. Li, *J. Electrochem. Soc.*, 2024, **171**, 053511.
- 20. S. Liang, H. Hu, J. Liu, H. Shen, Q. Li, N. Qiu, H. Guo, X. Guo, S. Du and Y. Zhu, *Appl. Catal. B: Environ.*, 2023, **337**, 123008.
- 21. M. Jiang, Y. Li, Z. Lu, X. Sun and X. Duan, *Inorg. Chem. Front.*, 2016, **3**, 630-634.