Sodium Metal Anode with Multiphasic Interphase for Room Temperature Sodium-Sulfur Pouch Cells

Chhail Bihari Soni¹, Sidhant Kumar Barik⁴, Vineeth S.K.^{1,3}, Bhupendra Yadav,^{1,2}, Mahesh Chandra¹, Sungjemmenla¹, Sanjay Kumar¹, Hemant Kumar⁴, and Vipin Kumar^{1,2*}

¹Department of Energy Science and Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India

²Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India

³University of Queensland–IIT Delhi Academy of Research (UQIDAR), Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India

⁴School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha, 752050, India

*Email id: <u>vkumar@dese.iitd.ac.in</u>

Figure-S1 Sodium symmetric cell (Na//Na) overpotential as a function of current density

Figure-S2 Nucleation overpotential of Na//Cu half-cell with additive and without additive at 1 mA cm⁻² current density and 1 mAh cm⁻² specific capacity.

Figure-S3 Coulombic efficiency of Na//Cu half cells at a current density of 4 mA cm⁻² and capacity of 2 mA h cm⁻²

Figure-S4 Coulombic efficiency of Na//Cu half cells at a current density of 2 mA cm⁻² and capacity of 4 mA h cm⁻² specific capacity

Figure-S5 Na//Na symmetric cell plating/stripping profile with additive and without additive at 1 mA cm⁻² current density and 4 mA h cm⁻² specific capacity.

Figure-S6 Raman mapping of different SEI species present on the surface of sodium metal anode after cycling (a) NaI distribution throughout the multiple scans in a region of 5 μ m x 5 μ m around 185 cm⁻¹ Raman shift (b) NaNH₂ distribution throughout the multiple scans in a region of 5 μ m x 5 μ m around 225 cm⁻¹ Raman shift (c) NaNH₂ distribution throughout the multiple scans in a region of 5 μ m x 5 μ m around 344 cm⁻¹ Raman shift (d) NaF distribution throughout the multiple scans in a region of 5 μ m x 5 μ m around 511 cm⁻¹ Raman shift

Figure-S7 Raman spectrum of sodium metal anode after 20 plating/stripping cycles in a symmetric cell configuration showing organic and inorganic components in the SEI

Figure-S8 *In-situ* optical cell testing of sodium metal anode in both the electrolyte systems. (a and e, without additive) at the starting stage of deposition (b and f) after nucleation from 0 to 3 minute of deposition (c and g) nucleation to growth region (d and h) sodium dendrite growth region up to 10 min. (i-m, with additive) at the starting stage of deposition (j and n) after nucleation from 0 to 3 minute of deposition, very less nucleation overpotential (k and o) deposition region (l and p) deposition region up to 10 min.

Figure-S9 FESEM images of the sodium surface after 20 plating/stripping cycles in a Na//Na symmetric cell at 1 mA cm⁻² current density. (a, b) Na surface cycled in MI based electrolyte (c-f) corresponding EDX mapping of sodium anode comprising N, F, Na and I in the deposited layer. (g, h) Na surface in the reference electrolyte cell (i, j) EDX mapping of sodium anode comprising Na and F in the deposited layer.

Table-S1	A	fair	comparison	of	Na//Na	symmetric	cell	performance	parameters	i.e.,
overpoten	tial	and c	ycle number							

Cell type	Salt	Solve	Additive	Curren	Capacit	Overpoten	Cycle
		nt		t	y (mA h	tial (m V)	life (h)
				density	cm ⁻²)		
				(mA			
				cm ⁻²)			
Na//Na	1 M	Digly	100 mM	1	1	30-35	>3200
(This	NaOTf	me	Methylamm				
work)			onium iodide				
Na//Na ¹	0.8 M	TMP/	DTD as co-	0.5	1	200	1350
	NaPF6	FEC	solvent				

		(7:3)					
Na//Na ²	1 M	EC/P	2% TMDT	0.5	1	400	450
	NaPF ₆	C					
Na//Na ³	0.3 M	EC/P	Acetamide	0.5	0.5	120	350
	NaPF ₆	C	(BSTFA)				
Na//Na ⁴	4 M	DMC	1% SbF ₃	0.5	0.5	25	1000
	NaFSI						
Na//Na ⁵	1 M	FEC	0.75 %	0.5	1	500	350
	NaTFSI		NaAsF ₆				
Na//Na ⁶	2 M	DME/	1% SbF ₃	0.5	0.5	200	1200
	NaPF ₆	FEPE					
Na//Na ⁷	1 M	EC/D	0.05 M SnCl ₂	0.5	1	100	500
	NaClO ₄	EC					
Na//Na ⁸	1 M	Digly	0.033 M	2	1	38	400
	NaPF ₆	me	Na ₂ S ₆				
Na//Na ⁹	1 M	EC/P	FEC	1	1	100	100
	NaPF ₆	C					
Na//Na ¹⁰	1 M	Digly	100 mM	1	1	30	1200
	NaOTf	me	9-Fluorenone				
Na//Na ¹¹	1 M	EC/P	1 Wt%	1	1	80	600
	NaPF ₆	C	Perfluoroben				
			zene				
Na//Na ¹²	1 M	Digly	Cetyltrimethy	3	3	500	80
	NaPF ₆	me	lammonium				
			bromide				

Table-S2 Resistance value from EIS data after fitting for both the electrolyte system at different temperature

S. No.	Temperature	Cell	Resistance (R)
1	10 °C (283K)	With additive	103.56
		Without additive	241.82

2	20 °C (293K)	With additive	60.43
		Without additive	134.61
3	30 °C (303K)	With additive	44.30
		Without additive	115.33
4	40 °C (313K)	With additive	29.87
		Without additive	90.47
6	50 °C (323K)	With additive	26.88
		Without additive	61.20
6	60 °C (333K)	With additive	20.14
		Without additive	47.63

Table-S3 XPS peak assignments for organic species in SEI with additive

Element	Peak position	Peak assignment	Species
С	288.2/286.5/284.8 eV	С-О/ /С=О /С-С, С-Н	RCH ₂ ONa
0	531/535.5	Na-O, C=O/C-O	RCH ₂ ONa, Na ₂ O

Figure-S10 High-resolution XPS spectra of Na metal anode after 20 plating/stripping cycles at 1 mA cm⁻² current density for (a) C1s and (b) O1s showing organic components in the SEI

Figure-S11 Microscopic and elemental analysis of the as-synthesized SPAN cathode material (a) showing XRD spectra for said material, all the peaks are corresponding to SPAN (b-c) FESEM images of SPAN powder (d-f) EDX analysis of the said material showing the uniform distribution of N and S in the material

Figure-S12 The possible reaction pathways of SPAN cathode¹³

Figure-S13 Cyclic voltammogram for Na//SPAN full cells (a) without and (b) with additive. CVs were conducted at a scan rate of 0.1 mV s^{-1} in a potential window of 0.6 to 2.6 V

References

- M. Zhu, L. Li, Y. Zhang, K. Wu, F. Yu, Z. Huang, G. Wang, J. Li, L. Wen, H. K. Liu, S. X. Dou, Y. Yu and C. Wu, *Energy Storage Mater.*, 2021, 42, 145–153.
- M. Zhu, Y. Zhang, F. Yu, Z. Huang, Y. Zhang, L. Li, G. Wang, L. Wen, H. K. Liu, S. X. Dou and C. Wu, *Nano Lett.*, 2021, 21, 619–627.
- 3 R. Jiang, L. Hong, Y. Liu, Y. Wang, S. Patel, X. Feng and H. Xiang, *Energy Storage Mater.*, 2021, 42, 370–379.
- 4 W. Fang, H. Jiang, Y. Zheng, H. Zheng, X. Liang, Y. Sun, C. Chen and H. Xiang, J. *Power Sources*, 2020, **455**, 227956.
- S. Wang, W. Cai, Z. Sun, F. Huang, Y. Jie, Y. Liu, Y. Chen, B. Peng, R. Cao, G.
 Zhang and S. Jiao, *Chem. Commun.*, 2019, 55, 14375–14378.
- W. Fang, R. Jiang, H. Zheng, Y. Zheng, Y. Sun, X. Liang, H. F. Xiang, Y. Z. Feng and
 Y. Yu, *Rare Met.*, 2021, 40, 433–439.
- X. Zheng, H. Fu, C. Hu, H. Xu, Y. Huang, J. Wen, H. Sun, W. Luo and Y. Huang, J. Phys. Chem. Lett., 2019, 10, 707–714.
- 8 H. Wang, C. Wang, E. Matios and W. Li, *Angew. Chemie*, 2018, **130**, 7860–7863.

- M. Han, C. Zhu, T. Ma, Z. Pan, Z. Tao and J. Chen, *Chem. Commun.*, 2018, 54, 2381–2384.
- C. Bihari, S. Bera, S. K. Vineeth, H. Kumar and V. Kumar, *J. Energy Storage*, 2023, 71, 108132.
- C. Zhu, D. Wu, Z. Wang, H. Wang, J. Liu, K. Guo, Q. Liu and J. Ma, *Adv. Funct. Mater.*, 2024, 34, 1–9.
- J. Luo, Y. Zhang, E. Matios, P. Wang, C. Wang, Y. Xu, X. Hu, H. Wang, B. Li and W. Li, *Nano Lett.*, 2022, 22, 1382–1390.
- C. Sanjaykumar, N. Sungjemmenla, M. Chandra, C. B. Soni, S. K. Vineeth, S. Das, N.Cohen, H. Kumar, D. Mandler and V. Kumar, *J. Mater. Chem. A*, 2024, 1420–1429.